Answer:
7y - 2y² - 4
Step-by-step explanation:
5y - 5y² - 5 + 2 + 2y + 3y² - 1
5y + 2y - 5y² + 3y² - 5 + 2 - 1 (combine like terms)
7y - 2y² - 4
Susan Johnson earns a yearly salary of $83,280. a. How much would Susan be paid if she were
paid monthly? b. How much would she be paid if she were paid bi-weekly?
I need help with 3 and 4
Answer:
Step-by-step explanation:
3) G
Step-by-step explanation:
Q(-1,-1) R(3,1) S(2,-4)
x+2 y+3 translation then rotation 180 (x,y) be (-x,-y)
Q -1+2 -1+3 (1,2) (-1,-2)
R 3+2 1+3 (5,4) (-5,-4)
S 2+2 -4+3 (4,-1)
Two stores sell the same computer for the same original price. Store A advertises that the computer is on sale for 25% off the original price. Store B advertises that it is reducing the computer’s price by $180. When Brittany compares the sale prices of the computer in both stores, she concludes that the sale prices are equal. Let p represent the computer’s original price. Which equation models this situation?
Answer:
p= 25/100 = 180/x
Step-by-step explanation:
In order to find the computer's original price, you must use the equation p= 25/100 = 180/x and solve for x.
Answer:
0.75p=p-180
Step-by-step explanation:
0.75p=p-180 is your answer
use the formula S = 40,000 (1.06)t to calculate your salary after 4 years. Round your answer to the nearest dollar.
a. $42,400
b. $44,944
c. $47,641
d. $50,499
Answer:
d. $50,499
Step-by-step explanation:
Given:
S = 40,000 (1.06)^t
Where,
t=4 years
S=40,000(1.06)^4
=40,000(1.26247696)
=50,499.0784
To the nearest dollar
S=$50,499
The answer is d. $50,499
Let f (x) = |2). Write a function g whose graph is a vertical shrink by a factor of
followed by a translation 2 units up of the graph of f.
Answer:
This is poorly written, so i will answer it as it was:
"Let f (x) = |2). Write a function g(x) whose graph is a vertical shrink by a factor of A, followed by a translation 2 units up of the graph of f."
I don't really know what you do mean by I2), so i will answer it in a general way.
First, we do a vertical shrink of factor A.
A must be a number smaller than one and larger than zero., then if g(x) is a vertical shrink of factor A of the graph of f(x), we have that:
g(x) = A*f(x)
As 0 < A < 1
We will have that the graph of g(x) is a vertical compression of the graph of f(x)
Now we do a vertical shift of 2 units up.
A general vertical shift of N units up is written as:
g(x) = f(x) + N
Where N is a positive number.
So in our case, we have:
g(x) = A*f(x) + 2.
Where you will need to replace the values of A and f(x) depending on what the actual question says,
Solve: 5x2 + 25x = 0
Answer:
x = -0.4
x = -(2/5)
Answer:
x = ± √5
Step-by-step explanation:
Please indicate exponentiation by using the symbol " ^ ":
5x^2 + 25x = 0
Divide all three terms by 5. We get:
x^2 + 5 = 0, or x^2 = -5
Then x = ± √5
can u help me. if answer is correct, i will give u brainliest
Answer:
135 units²
Step-by-step explanation:
The area (A) of a parallelogram is calculated as
A = bh ( b is the base and h the perpendicular height )
To calculate h use Pythagoras' identity on the right triangle on the left
h² + 8² = 17²
h² + 64 = 289 ( subtract 64 from both sides )
h² = 225 ( take the square root of both sides )
h = [tex]\sqrt{225}[/tex] = 15 , thus
A = 9 × 15 = 135 units²
In 5 hours a small plane can travel downwind for 4000 kilometers
or upward 3000 kilometers. Find the speed of this plane with no wind and the speed of the wind current.
write as an equation
Answer:
the speed of the plane with no wind is 700 km/h and the speed of the wind is 100 km/h
Step-by-step explanation:
Let V be the speed of the plane and v the speed of the wind. Down current, they are in opposite directions, and the plane travels a a distance of 4000 km in 5 hours,so
5(V - v) = 4000
V - v = 800 (1)
For upwind movement, since the plane travels 3000 km in 5 hours, so
5(V + v) = 3000
V + v = 600 (2)
adding equations (1) and (2), we have
V - v = 800
+
V + v = 600
2V = 1400
V = 1400/2 = 700 km/h
subtracting equations (2) from (1), we have
V - v = 800
-
V + v = 600
-2v = 200
v = -200/2 = -100 km/h
So, the speed of the plane with no wind is 700 km/h and the speed of the wind is 100 km/h
three people alice , ben , calvin, are conversing at a taxi stand since taxis are the only ride service in this town. although they havent met before ,they realize that all are going the same route to get desire destination. alice destination is 20 miles away , ben destination 30 miles away and calvins destination 40 miles away , the taxi costs 2 dollars per mile with tip included regardless of the number of passengers. how much should each person pay if the three share a cab to their respective destination
Answer:
Alice will have to pay $13.33
Ben will have to pay $23.33
Kelvin will have to pay $43.33
Step-by-step explanation:
Given that
Alice destination is 20 miles away
Ben destination is 30 miles away
Calvin destination is 40 miles away.
For a mile, taxi costs 2 dollars.
To find:
How much each person has to pay if they share the same taxi to their respective destinations?
Solution:
For the first 20 miles, the taxi will be shared by all 3 of them.
Charges for 20 miles = 20 [tex]\times[/tex] 2 = $40
This $40 will be shared among all 3.
Each will pay = [tex]\frac{40}{3} = \$13.33[/tex]
Charges for Alice = $13.33
Charges for Ben = $13.33
Charges for Calvin = $13.33
For the next 10 miles, the taxi will be shared by Ben and Calvin.
Charges for 10 miles = 10 [tex]\times[/tex] 2 = $20
This $20 will be shared between Ben and Calvin.
Each will pay = [tex]\frac{20}{2} = \$10[/tex]
Charges for Alice = $13.33
Charges for Ben = $13.33 + 10 = $23.33
Charges for Calvin = $13.33 + 10 = $23.33
For the next 10 miles, Calvin travels alone.
Charges for 10 miles = 10 [tex]\times[/tex] 2 = $20
This $20 will be paid by Calvin alone.
Charges for Alice = $13.33
Charges for Ben = $23.33
Charges for Calvin = $23.33 + 20 = $43.33
The quotient of x^2+x-6/x^2-6x+5*x^2+2x-3/x^2-7x+10 has ___ in the numerator and ______ in the denominator.
Answer:
So the quotient of [tex]\frac{x^{2} + x - 6}{x^{2} -6x + 5} X \frac{x^{2} + 2x - 3}{x^{2} -7x + 10}[/tex] has (x + 3)² in the numerator and (x + 5)² in the denominator.
Step-by-step explanation:
[tex]\frac{x^{2} + x - 6}{x^{2} -6x + 5} X \frac{x^{2} + 2x - 3}{x^{2} -7x + 10}[/tex]
Factorizing the expressions we have
[tex]\frac{x^{2} + 3x -2x - 6}{x^{2} -x - 5x + 5} X \frac{x^{2} + 3x - x - 3}{x^{2} -2x -5x + 10}[/tex]
[tex]\frac{x(x + 3)- 2(x + 3)}{x(x -1) - 5(x - 1)} X \frac{x(x + 3) - 1(x + 3)}{x(x - 2) - 5(x - 2)}[/tex]
[tex]\frac{(x + 3)(x - 2)}{(x - 5)(x - 1)}X\frac{(x + 3)(x - 1)}{(x - 2)(x - 5)}[/tex]
Cancelling out the like factors, (x -1) and (x - 2), we have
[tex]\frac{(x + 3)(x + 3)}{(x - 5)(x - 5)}[/tex]
= [tex]\frac{(x + 3)^{2} }{(x + 5)^{2} }[/tex]
So the quotient of [tex]\frac{x^{2} + x - 6}{x^{2} -6x + 5} X \frac{x^{2} + 2x - 3}{x^{2} -7x + 10}[/tex] has (x + 3)² in the numerator and (x + 5)² in the denominator.
Write the equation of a circle with a center at (12, 6) and a radius of 6.
Answer:
(x-12)² + (y-6)² = 36 (Option C)
Step-by-step explanation:
use circle formula
(x-h)² + (y-k)²= r²
h= 12 and k= 6 and r= 6
(x-12)² + (y-6)² = 6²
6 squared = 36 (6·6)
(x-12)² + (y-6)² = 36
Which of the following shows the correct solution steps and solution to 7x-4= -18?
Answer:
x = -2
Step-by-step explanation:
To solve for x always get x on one side
First add 4 on each side, 4 + 7x - 4 = -18 + 4
Next subtract 18 from 4, making it -14 7x = -14
Now divide 7 on each side, x = -2
A relative frequency table is made from data in a frequency table. Relative Frequency Table: A 4-column table with 3 rows. The first column has no label with entries likes S, T, total. The second column is labeled U with entries 26%, 21%, 47%. The third column is labeled V with entries 42%, k, 53%. The fourth column is labeled total with entries 68%, 32%, 100%. What is the value of k in the relative frequency table? Round the answer to the nearest percent.
Answer:
Hey There. ☆~<___`£《》£`____>~☆ The correct answer is: 33% okay if you don't understand this. Just tell me Okay. k=11 And, let me know if you don't understand how I got this. So, I'm gonna write it out
U V total
S 26 42 68
T 21 k 32
Total 47 53 100
So, you want to look at the column and row labeled total, this is the key. for the row total, it sums up everything in the column above it. so for the u column, the total value is 47 while the two values above it are 26 and 21. These two values sum to 47. This is the same for all other columns, and you can use the same reasoning with the total column as well summing rows.
This gives you two ways to solve for k. either 21 + k = 32 or 42 + k = 53. Either way gets you the answer k = 11
Hope It Helps!~ ♡
ItsNobody~
Answer:
The answer is B
Step-by-step explanation:
In circle O, AC and BD are diameters. Circle O is shown. Line segments B D and A C are diameters. A radius is drawn to cut angle C O C into 2 equal angle measures of x. Angles A O C and B O C also have angle measure x. What is mArc A B?
Answer:
120
Step-by-step explanation:
Got it right on the assigment
Answer:
c. 120
Step-by-step explanation:
In a naval engagement, one-third of the fleet was captured, one-sixth was sunk, and two ships were destroyed by fire. One-seventh of the surviving ships were lost in a storm after the battle. Finally, the twenty-four remaining ships sailed home. How many ships were in the fleet before the engagement?
Answer:
60 ships.
Step-by-step explanation:
Let the total number of ships in the naval fleet be represented by x
One-third of the fleet was captured = 1/3x
One-sixth was sunk = 1/6x
Two ships were destroyed by fire = 2
Let surviving ships be represented by y
One-seventh of the surviving ships were lost in a storm after the battle = 1/7y
Finally, the twenty-four remaining ships sailed home
The 24 remaining ships that sailed home =
y - 1/7y = 6/7y of the surviving fleet sailed home.
Hence
24 = 6/7y
24 = 6y/7
24 × 7/ 6
y = 168/6
y = 28
Therefore, total number of ships that survived is 28.
Surviving ships lost in the storm = 1/7y = 1/7 × 28 = 4
Total number of ships in the fleet(x) =
x = 1/3x + 1/6x + 2 + 28
Collect like terms
x - (1/3x + 1/6x) = 30
x - (1/2x) = 30
1/2x = 30
x = 30 ÷ 1/2
x = 30 × 2
x = 60
Therefore, ships that were in the fleet before the engagement were 60 ships.
what is the image (-9,-2) after a reflection over the x-axis ?
Answer:
(-9,2)
Step-by-step explanation:
The rule for reflecting over the x axis is
(x,y)→(x,−y)
(-9, -2) becomes ( -9, - -2) = (-9,2)
Answer:
(-9,2)
Step-by-step explanation:
It will be -9,2 because when you reflect across x axis you change the y axis not the x axis because if you imagine it it works like that
Solve the equation. Do not put "x = "in your answer, just type the number.
Ex: -8 3x - 5 = 13*
Answer:
6
Step-by-step explanation:
3x - 5 = 13
3x = 18 (Add 5 to both sides; 13 + 5 = 18)
x = 6 (Divide both sides by 3; 18 / 3 = 6)
Find the common ratio for the geometric sequence for which [tex]a_1[/tex]=3 and [tex]a_5[/tex]=48. A. -3 B. -2 C. 3 D. 2
Answer:
An= A1 * r^n-1
A5= 3 * r^5-1
48= 3*r^4
48÷3=r^4
16=r^4
r=
[tex] \sqrt[4]{16} [/tex]
r=2
The answer is D. 2
Espero que te sirva
hsじぇいrんふぉそ具jんじょおlっっっkjか、
What are the solutions to the equation (2x – 5)(3x – 1) = 0? x = or x = 3 x = x = 5 or x = 1
Answer:
x = 5/2 x=1/3
Step-by-step explanation:
(2x – 5)(3x – 1) = 0
Using the zero product property
2x-5 =0 3x-1 =0
2x=5 3x =1
x = 5/2 x=1/3
Answer:
C on edg 2021
Step-by-step explanation:
If you're good at exact values of trig ratios pea shell me with 13a
It is an equilateral triangle so its angles are equal 60°. From the definition, we know that:
[tex]\sin60^\circ=\dfrac{h}{4}[/tex]
and
[tex]\sin60^\circ=\dfrac{\sqrt{3}}{2}[/tex]
so
[tex]\dfrac{\sqrt{3}}{2}=\dfrac{h}{4}\quad \Big|\cdot4\\\\\\h=\dfrac{4\cdot\sqrt{3}}{2}\\\\\boxed{h=2\sqrt{3}}\\[/tex]
Answer:
h = √12
Step-by-step explanation:
use the Pythagorean
h² = 4² - 2²
h² = 16 - 4
h = √12
Calculate the volume and surface area of a cone with the base of 20cm, the vertical hieght of 34cm and 35.6cm leaning height.
Answer:
Step-by-step explanation:
Volume = 1/3πr²h
Surface Area = πr(r+√(h²+r²))
V = 1/3π(10)²(34) = 3560 .5 cm³
SA = π(10)(10 + √(34²+10²)) = 1427.5 cm²
How do I find DG. A. 3 B. -7 c. 16 d. 13
Answer:
x = -7
Step-by-step explanation:
DE + EF + FG = DG
2x+17 + 8+2 = x+20
Combine like terms
2x+ 27 = x+20
Subtract x from each side
2x+27-x = x+20-x
x+27 = 20
Subtract 27 from each side
x+27-27 = 20-27
x = -7
What is the value of w? inscribed angles (Image down below)
Answer:
w = 100°
Step-by-step explanation:
Opposite angles in an inscribed quadrilateral in a circle are supplementary.
Therefore, [tex] w + 80 = 180 [/tex]
Subtract 80 from both sides
[tex] w + 80 - 80 = 180 - 80 [/tex]
[tex] w = 100 [/tex]
The value of w = 100°
PLEASE help me solve this question! No nonsense answers please!
Answer:
[tex]\boxed{\sf Option \ 1}[/tex]
Step-by-step explanation:
The profit is revenue (R ) - costs (C ).
Subtract the expression of costs (C ) from revenue (R ).
[tex]10x-0.01x^2-(2x+100)[/tex]
Distribute negative sign.
[tex]10x-0.01x^2-2x-100[/tex]
Combine like terms.
[tex]8x-0.01x^2-100[/tex]
The first option has a positive 100, which is wrong.
The rest options are right, when we expand brackets the result is same.
A point is randomly chosen on a map of North America. Describe the probability of the point being in each location: North America: New York City: Europe:
Answer:
We know that the map is of North America:
The probabilities are:
1) North America:
As the map is a map of North America, you can point at any part of the map and you will be pointing at North America, so the probability is p = 1
or 100% in percentage form.
2) New York City.
Here we can think this as:
The map of North America is an extension of area, and New Yorck City has a given area.
As larger is the area of the city, more probable to being randomly choosen, so to find the exact probability we need to find the quotient between the area of New York City and the total area of North America:
New York City = 730km^2
North America = 24,709,000 km^2
So the probability of randomly pointing at New York City is:
P = ( 730km^2)/(24,709,000 km^2) = 3x10^-5 or 0.003%
3) Europe:
As this is a map of Noth America, you can not randomly point at Europe in it (Europe is other continent).
So the probaility is 0 or 0%.
Answer:
North America: certain
New York City: unlikely
Europe: impossible
Step-by-step explanation:
simply
Estimate. Then determine the area. Please please please, need help!
Estimate:
2.3 rounds down to 2
So after multiplying by 2, the area is estimated to be 4 cm squared.
Actual Area:
2.3 x 2 = 4.6
The actual area of the shape is 4.6 cm squared.
Hope this helped!
Answer:
4.6
Step-by-step explanation:
The sum of Rhonda and her daughter Tenica’s age is 64. The difference in their ages is 28. How old is each person?
Answer:
The mother (Rhoda) is 46 years old.
The daughter (Tenica) is 18 years old
Step-by-step explanation:
Let the age of the mother (Rhoda) be m
Let the age of the daughter (Tenica) be d.
The sum of Rhonda and her daughter Tenica’s age is 64. This can be written as:
m + d = 64 ... (1)
The difference in their ages is 28. This can be written as:
m – d = 28 ... (2)
From the above illustrations, the equation obtained are:
m + d = 64 ... (1)
m – d = 28 ... (2)
Solving by elimination method:
Add equation 1 and 2 together
. m + d = 64
+ m – d = 28
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
2m = 92
Divide both side by 2
m = 92/2
m = 46
Substitute the value of m into any of the equation to obtain the value of d. Here, we shall use equation 1
m + d = 64
m = 46
46 + d = 64
Collect like terms
d = 64 – 46
d = 18
Therefore, the mother (Rhoda) is 46 years old and the daughter (Tenica) is 18 years old.
Help wanted ill do brainliest!!
Answer:
x=-1
Step-by-step explanation:
0.5 ( 5 - 7x ) = 8 - ( 4x + 6 )
- Distribute 0.5 by 5 and -7x
2.5 - 3.5x = 8 - ( 4x + 6 )
Second- Distribute the invisible one into 4x and 6
2.5 - 3.5x = 8 - 4x - 6
- Combine like terms: Subtract 6 from 8
2.5-3.5x= - 4x + 2
-Add 4x from both sides of the equation
2.5 + 0.5x = 2
-Subtract 2.5 from both sides of the equation
0.5x = 2- 2.5
0.5x = -0.5
-Then divide each side by 0.5x
0.5x = -0.5
0.5 0.5
-Cancel the common factor of 0.5
x = - 0.5
0.5
-Divide -0.5 by 0.5
X = -1
The projected worth (in millions of dollars) of a large company is modeled by the equation w = 206(1.1) t. The variable t represents the number of years since 2000. What is the projected annual percent of growth, and what should the company be worth in 2011? A. 10%; $534.31 million B. 11%; $646.52 million C. 10%; $587.74 million D. 11%; $226.60 million
Answer:
Hey There!! The Correct answer is: The equation is w = 241(1.06)t
And here variable t represents the number of years since 2000.
In 2001 means t=2001 -2000 = 1
So we plug 1 for t in the given expression , that is w = 241(1.06)1 = 241 * 1.06 = 255.46
Therefore in 2001, it should be worth to 255.46.
And in the given expression 1.06=1 +0.06, where 0.06 is the annual percent of growth that is 6 % .
Hope It Helped!~ ♡
ItsNobody~ ☆
The projected annual percent of growth is 10% and the company worth in 2011 will be $587.74 millions. Then the correct option is C.
What is an exponent?Consider the function:
y = a (1 ± r) ˣ
Where x is the number of times this growth/decay occurs, a = initial amount, and r = fraction by which this growth/decay occurs.
If there is a plus sign, then there is exponential growth happening by r fraction or 100r %.
If there is a minus sign, then there is exponential decay happening by r fraction or 100r %.
The projected worth (in millions of dollars) of a large company is modeled by the equation is given as,
[tex]\rm w = 206\times (1.10)^t\\\\w = 206\times (1+0.10)^t[/tex]
Then the projected annual percent of growth is 10%.
The variable t represents the number of years since 2000.
Then the company worth in 2011 will be
w = 206 × 1.1¹¹
w = $587.74 millions
The projected annual percent of growth is 10% and the company worth in 2011 will be $587.74 millions.
Then the correct option is C.
More about the exponent link is given below.
https://brainly.com/question/5497425
#SPJ2
Find all values of $x$ such that \[\frac{2x}{x + 2} = -\frac{6}{x + 4}.\]If you find more than one value, then list your solutions, separated by commas.
Greetings from Brasil...
2X/(X + 2) = 6/(X + 4)
2X(X + 4) = 6(X + 2)
2X² + 2X - 12 = 0 ÷2
2X²/2 + 2X/2 - 12/2 = 0/2
X² + X - 6 = 0Δ = 25
X' = 2X'' = - 3S = {-3, 2}
By using factorization, [tex]\frac{2x}{x+2} =\frac{6}{x+4}[/tex] , values of x are -2, 3.
What is factorization?Factorization can be defined as the process of breaking down a number into smaller numbers which when multiplied together arrive at the original number. These numbers are broken down into factors or divisors.
Given
[tex]\frac{2x}{x+2} =\frac{6}{x+4}[/tex]
⇒ 2x(x + 4) = 6(x + 2)
⇒ [tex]2x^{2} +8x = 6x + 12[/tex]
⇒ [tex]2x^{2} +8x-6x-12=0[/tex]
⇒ [tex]2x^{2} +2x -12=0[/tex]
Divide above equation by 2, we get
⇒ [tex]x^{2} +x -6=0[/tex]
⇒ [tex]x^{2} +2x-3x-6=0[/tex]
⇒ [tex]x(x+2)-3(x+2)=0[/tex]
⇒ [tex](x+2)(x-3)=0[/tex]
⇒ x = -2, 3
By using factorization, [tex]\frac{2x}{x+2} =\frac{6}{x+4}[/tex] , values of x are -2, 3.
Find out more information about factorization here
https://brainly.com/question/1863222
#SPJ2