Answer:
x= (2+ √ 34) /5 , (2- √ 34) /5
decimal form= 1.566
Step-by-step explanation:
If a=120° , find the measure of angles b, c and d.
Explain your reasoning.
Answer:
b=120°
c=60°
d=60°
SEE THE IMAGE FOR SOLUTION
Your small business spent $40 on food and another $60 on materials. Then, you sold an item for $120, but you had to pay a $90 service fee. Finally, you were given a refund from the Internal Revenue Service (IRS) for $70. If the expression describing these transactions is the following, then how does it evaluate?
Answer:
40$+60$=100$ spent
120$sold
90$ payed
70$ refund
120 (sold) -90 (payed) =30+70 (refund) =100$ (profit)
Step-by-step explanation:
You spent 100$
And you sold and got 120 but you payed 90$ from 120$ money left is 30$
Then they refunded you (pay back the money (give you the money ))
So the money that your left with is 30$ and the refund money is 70$
So add the money that your left with is gives you 100$
A circular fence is being placed to surround a tree. The diameter of the
fence is 4 feet. How much fencing is used? *
Answer:
12.6 ft
Step-by-step explanation:
If g(x) = x^2 + 8x - 24 find the value of g(6)
Answer:
hope it helps you..........
Answer:
60
Step-by-step explanation:
g(x)= x^2 +8x - 24
Substitute x for 6 in the equation
g(6)= 6^2 + 8(6) - 24
= 36+48-24
= 60
please help me with this
——/———————-////—————-
Answer:
"C"
Step-by-step explanation:
-B means the B is in the opposite direction
A bag of 31 tulip bulbs contains 13 red tulip bulbs, 9 yellow tulip bulbs, and 9 purple tulip bulbs. Suppose two tulip bulbs are randomly selected without replacement from the bag. (a) What is the probability that the two randomly selected tulip bulbs are both red? (b) What is the probability that the first bulb selected is red and the second yellow? (c) What is the probability that the first bulb selected is yellow and the second red? (d) What is the probability that one bulb is red and the other yellow?
Answer:
36% on first
Step-by-step explanation:
A superhero can fly from New York to Los Angeles in 30 minutes. The distance from New York to Los Angeles is approximately 2,450 miles.
How many miles per hour is the superhero flying?
Work Shown:
30 min = 30/60 = 0.5 hours
distance = rate*time
rate = distance/time
rate = (2450 miles)/(0.5 hours)
rate = (2450/0.5) mph
rate = 4900 mph
For the sake of comparison, a typical commercial passenger jet can reach max speeds of about 600 mph.
1/10 + 3/5
ANSWER QUICK PLS FIRST ANSWER GETS BRAINLIEST
Study the scatterplot and trend line. Which two points can be used to find the equation of the trend line?
Which points are on the trend line?
(1, 30) and (9, 95)
(2, 30) and (6, 70)
(2, 45) and (8, 90)
(3, 50) and (7, 65)
Answer:
C
Step-by-step explanation:
Just trust
Answer:
C
Step-by-step explanation:
I did the assignment in edge and got it right.
Proof:
find an odd natural number x such that LCM (x,40)= 1400
The odd natural number x such that the LCM of x and 40 is 1400 is 35
Lowest Common MultipleThe least common multiple the lowest multiple of two or more numbers.
From the question, we need to determine the value of x of the LCM of the numbers is 1400
LCM (x,40) = 1400
Find a possible value of x
x = 1400/40
x = 35
Hence the odd natural number x such that the LCM of x and 40 is 1400 is 35
Learn more on LCM here: https://brainly.com/question/233244
#SPJ1
6x + 7y = 4x + 4y
Complete the missing value in the solution to the equation.
( ?,-4)
Hi there!
»»————- ★ ————-««
I believe your answer is:
(6, -4)
[tex]x = 6[/tex]
»»————- ★ ————-««
Here’s why:
⸻⸻⸻⸻
We would need to solve for 'x'. We are already given the 'y' value of '-4', so we would need to substitute y for '-4', and then undo operations to isolate 'x'.⸻⸻⸻⸻
[tex]\rightarrow 6x + 7(-4) =4x + 4(-4)\\\\\rightarrow 6x - 28 = 4x - 16\\\\\rightarrow 6x - 28 + 28 = 4x - 16 + 28\\\\\rightarrow 6x = 4x + 12\\\\\rightarrow 6x - 4x = 4x - 4x + 12\\\\\rightarrow 2x = 12\\\\\rightarrow \frac{2x=12}{2}\\\\\rightarrow \boxed{x = 6}[/tex]
⸻⸻⸻⸻
The '6' would replace the question mark.
»»————- ★ ————-««
Hope this helps you. I apologize if it’s incorrect.
14. What, if any, is a real solution to 5x +1 +9 - 3?
1
C
D. There is no real solution.
I believe the question is:
What is the solution to 5x + 1 +9 - 3
In this case, we solve for X.
5x + 1 + 9 - 3
5x + 10 - 3
5x + 7
5x = -7
x = -7/5
Unfortunately, It is not one of the answer choices it looks like.
Maybe you should reword your question but hopefully this is correct.
If you meant to say 5x+1 + 9 < 3 --> 5x + 10 < 3 --> 5x < -7 --> x < -7/5
The value of x in a given expression is -7/5.
We have given that,
5x + 1 + 9 - 3
We have to determine the value of x.
What is the variable?A variable is any factor, trait, or condition that can exist in differing amounts or types. Scientists try to figure out how the natural world works
In this case, we solve for X.
5x + 1 + 9 - 3
5x + 10 - 3
5x + 7
5x = -7
x = -7/5
If you meant to say 5x+1 + 9 < 3 --> 5x + 10 < 3 --> 5x < -7 --> x < -7/5.
Therefore we get the value of x is -7/5.
To learn more about the value of the variable visit:
https://brainly.com/question/5030068
#SPJ2
In 2012 your car was worth $10,000. In 2014 your car was worth $8,850. Suppose the value of your car decreased at a constant rate of change. Define a function f to determine the value of your car (in dollars) in terms of the number of years t since 2012.
Answer:
The function to determine the value of your car (in dollars) in terms of the number of years t since 2012 is:
[tex]f(t) = 10000(0.9407)^t[/tex]
Step-by-step explanation:
Value of the car:
Constant rate of change, so the value of the car in t years after 2012 is given by:
[tex]f(t) = f(0)(1-r)^t[/tex]
In which f(0) is the initial value and r is the decay rate, as a decimal.
In 2012 your car was worth $10,000.
This means that [tex]f(0) = 10000[/tex], thus:
[tex]f(t) = 10000(1-r)^t[/tex]
2014 your car was worth $8,850.
2014 - 2012 = 2, so:
[tex]f(2) = 8850[/tex]
We use this to find 1 - r.
[tex]f(t) = 10000(1-r)^t[/tex]
[tex]8850 = 10000(1-r)^2[/tex]
[tex](1-r)^2 = \frac{8850}{10000}[/tex]
[tex](1-r)^2 = 0.885[/tex]
[tex]\sqrt{(1-r)^2} = \sqrt{0.885}[/tex]
[tex]1 - r = 0.9407[/tex]
Thus
[tex]f(t) = 10000(1-r)^t[/tex]
[tex]f(t) = 10000(0.9407)^t[/tex]
what is the absolute value of |9|?
Answer:
9
Step-by-step explanation:
it's as simple as that 9 is 9 away from 0
i have 6 one, 7 tens and 14 hundreds. what number am i?
Answer:
Step-by-step explanation:
6×1 = 6
7×10 = 70
14×100 = 1400
6+70+1400 = 1476
Answer:
1,476
Step-by-step explanation:
I hope this helps you out! (please give me brainliest)
Solve for x
Answer choices:
4
5
8
3
2
opposite angles are equal
[tex]\\ \sf\longmapsto 13x+19=84[/tex]
[tex]\\ \sf\longmapsto 13x=84-19[/tex]
[tex]\\ \sf\longmapsto 13x=65[/tex]
[tex]\\ \sf\longmapsto x=\dfrac{65}{13}[/tex]
[tex]\\ \sf\longmapsto x=5[/tex]
Answer:
[tex]\boxed {\boxed {\sf x=5}}[/tex]
Step-by-step explanation:
We are asked to solve for x.
We are given a pair of intersecting lines and 2 angles measuring (13x+19)° and 84°. The angles are opposite each other, so they are vertical angles. This means they are congruent or have the same angle measure.
Since the 2 angles are congruent, we can set them equal to each other.
[tex](13x+19)=84[/tex]
Solve for x by isolating the variable. This is done by performing inverse operations.
19 is being added to 13x. The inverse operation of addition is subtraction. Subtract 19 from both sides of the equation.
[tex]13x+19-19= 84 -19[/tex]
[tex]13x= 84 -19[/tex]
[tex]13x=65[/tex]
x is being multiplied by 13. The inverse operation of multiplication is division. Divide both sides by 13.
[tex]\frac {13x}{13}= \frac{65}{13}[/tex]
[tex]x= \frac{65}{13}[/tex]
[tex]x= 5[/tex]
For this pair of vertical angles, x is equal to 5.
I need help on this math problem
Answer:
for the first one, simply add g(x) and h(x) :
x+3 + 4x+1 = 5x + 4
the second one, you would multiply them :
(x+3)(4x+1) = 4x^2 + 13x + 3
the last one, you would subtract :
(x+3)-(4x+1) = -3x + 2
and then substitute 2 for 'x' :
-3*2 + 2 = -6 + 2 = -4
Answer:
1. 5x+4
2. [tex]4x^2+13x+3[/tex]
3. -4
Step-by-step explanation:
1. (x+3)+(4x+1)
Take off the parentheses and Add.
5x+4
2. (x+3)(4x+1)
Use the FOIL method to multiply.
[tex]4x^2+x+12x+3[/tex]
[tex]4x^2+13x+3[/tex]
3. First, set up the equation as (g-h)(x)
(x+3)-(4x+1)
x+3-4x-1
Solve.
-3x+2
Substitute in 2 for x.
-3(2)+2
-6+2
-4
Find the sum of -3x^2-4x+3 2x^2+3
Please help me! Thank you!
Find the length of BC
A. 27.22
B. 11.62
C. 22.02
D. 19.78
Answer:
B
Step-by-step explanation:
Since we know the measure of ∠B and the side opposite to ∠B and we want to find BC, which is adjacent to ∠B, we can use the tangent ratio. Recall that:
[tex]\displaystyle \tan\theta = \frac{\text{opposite}}{\text{adjacent}}[/tex]
The angle is 54°, the opposite side measures 16 units, and the adjacent side is BC. Substitute:
[tex]\displaystyle \tan 54^\circ = \frac{16}{BC}[/tex]
Solve for BC. We can take the reciprocal of both sides:
[tex]\displaystyle \frac{1}{\tan 54^\circ} = \frac{BC}{16}[/tex]
Multiply:
[tex]\displaystyle BC = \frac{16}{\tan 54^\circ}[/tex]
Use a calculator. Hence:
[tex]\displaystyle BC \approx 11 .62\text{ units}[/tex]
BC measures approximately 11.62 units.
Our answer is B.
How many solutions does the nonlinear system of equations graphed below have?
A. Four
B. Two
C. One
D. Zero
Answer:
Option (A)
Step-by-step explanation:
Solution of two functions represented by the graph are the common points or point of intersection of the graphs.
From the graph attached,
Parabola and ellipse are intersecting each other at four points.
Therefore, solutions of the given non linear functions will be FOUR.
Option (A) will be the correct option.
Assume a researcher wants to compare the mean Alanine Aminotransferase (ALT) levels in two populations, individuals who drink alcohol and individuals who do not drink alcohol. The mean ALT levels for the individuals who do not drink alcohol is 32 with a standard deviation of 14, and 37 individuals were in the sample. The mean ALT levels for individuals who drink alcohol is 69 with a standard deviation of 19, and 38 individuals were in the sample. Construct and interpret a 95% confidence interval demonstrating the difference in means for those individuals who drink alcohol when compared to those who do not drink alcohol.
a. The researchers are 95% confident that the true mean difference in ALT values between the population of drinkers and population of non-drinkers is between 24.22 and 39.78.
b. The researchers are 95% confident that the true mean difference in ALT values between the population of drinkers and population of non-drinkers is between 24.33 and 39.67
c. The researchers are 95% confident that the true mean difference in ALT values between the population of drinkers and population of non-drinkers is between 24.32 and 39.68.
d. The researchers are 95% confident that the true mean difference in ALT values between the population of drinkers and population of non-drinkers is between 24.41 and 39.59.
Answer:
c. The researchers are 95% confident that the true mean difference in ALT values between the population of drinkers and population of non-drinkers is between 24.32 and 39.68.
Step-by-step explanation:
Given :
Groups:
x1 = 69 ; s1 = 19 ; n1 = 38
x2 = 32 ; s2 = 14 ; n2 = 37
1 - α = 1 - 0.95 = 0.05
Using a confidence interval calculator to save computation time, kindly plug the values into the calculator :
The confidence interval obtained is :
(24.32 ; 39.68) ; This means that we are 95% confident that the true mean difference in ALT values between the two population lies between
(24.32 ; 39.68) .
The acute angle of the right angle triangle are in the ratio of 4:5
Answer:
Since the triangle is a right angled triangle, one of the angles is 90°. In the right angled triangle, the acute angles are in the ratio 4:5. Let the measures of the acute angles of the triangle in degrees be 4k and 5k, where k is a constant.
Step-by-step explanation:
hope it helps.
Answer:
40and50
Step-by-step explanation:
let the acute angles be 4x and 5x then,
4x+5x+90=180 [sum of all angles of a right angled triangle]
or,9x=180-90
or,x=90/9
x=10
4x=4×10=40
5x=5×10=50
solve for x please help!
Answer:
x = -1/4
Step-by-step explanation:
-4(-5x-3) = 7
Distribute
20x +12 = 7
Subtract 12 from each side
20x+12-12 = 7-12
20x = -5
Divide by 20
20x/20 = -5/20
x = -1/4
Next question
lets keep going
Answer:
U = 67.6 degrees
Step-by-step explanation:
Since this is a right triangle, we can use trig functions
cos U = adj side / hypotenuse
cos U = sqrt(10)/ sqrt(69)
cos U = sqrt(10/69)
Taking the inverse cos of each side
cos ^-1( cos U) = cos ^-1(sqrt(10/69))
U = 67.62335
To the nearest tenth
U = 67.6 degrees
Step-by-step explanation:
here's the answer to your question
People were asked if they owned an artificial Christmas tree. Of 78 people who lived in an apartment, 38 own an artificial Christmas tree. Also it was learned that of 84 people who own their home, 46 own an artificial Christmas tree. Is there a significant difference in the proportion of apartment dwellers and home owners who own artificial Christmas trees
Answer:
The p-value of the test is 0.4414, higher than the standard significance level of 0.05, which means that there is not a a significant difference in the proportion of apartment dwellers and home owners who own artificial Christmas trees.
Step-by-step explanation:
Before testing the hypothesis, we need to understand the central limit theorem and subtraction of normal variables.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Subtraction between normal variables:
When two normal variables are subtracted, the mean is the difference of the means, while the standard deviation is the square root of the sum of the variances.
Apartment:
38 out of 78, so:
[tex]p_A = \frac{38}{78} = 0.4872[/tex]
[tex]s_A = \sqrt{\frac{0.4872*0.5128}{78}} = 0.0566[/tex]
Home:
46 out of 84, so:
[tex]p_H = \frac{46}{84} = 0.5476[/tex]
[tex]s_H = \sqrt{\frac{0.5476*0.4524}{84}} = 0.0543[/tex]
Test if the there a significant difference in the proportion of apartment dwellers and home owners who own artificial Christmas trees:
At the null hypothesis, we test if there is no difference, that is, the subtraction of the proportions is equal to 0, so:
[tex]H_0: p_A - p_H = 0[/tex]
At the alternative hypothesis, we test if there is a difference, that is, the subtraction of the proportions is different of 0, so:
[tex]H_1: p_A - p_H \neq 0[/tex]
The test statistic is:
[tex]z = \frac{X - \mu}{s}[/tex]
In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, and s is the standard error.
0 is tested at the null hypothesis:
This means that [tex]\mu = 0[/tex]
From the samples:
[tex]X = p_A - p_H = 0.4872 - 0.5476 = -0.0604[/tex]
[tex]s = \sqrt{s_A^2 + s_H^2} = \sqrt{0.0566^2 + 0.0543^2} = 0.0784[/tex]
Value of the test statistic:
[tex]z = \frac{X - \mu}{s}[/tex]
[tex]z = \frac{-0.0604 - 0}{0.0784}[/tex]
[tex]z = -0.77[/tex]
P-value of the test and decision:
The p-value of the test is the probability of the difference being of at least 0.0604, to either side, plus or minus, which is P(|z| > 0.77), given by 2 multiplied by the p-value of z = -0.77.
Looking at the z-table, z = -0.77 has a p-value of 0.2207.
2*0.2207 = 0.4414
The p-value of the test is 0.4414, higher than the standard significance level of 0.05, which means that there is not a a significant difference in the proportion of apartment dwellers and home owners who own artificial Christmas trees.
2. Mandla spent one quarter of his pocket money on sweets. a. What fraction does he have left? b. If he had R40 pocket money, how much did he spend?
Answer:
a. 3/4 of pocket money left
b. R10
Step-by-step explanation:
a. 4/4 - 1/4 = 3/4
b. 40/4 = 10 = 1/4 of pocket money
(a). The fraction of pocket money left is 3/4
(b). If he had R40 pocket money, he spend R10.
What is the Ratio?The ratio is defined as a relationship between two quantities, it is expressed one divided by the other.
What are Arithmetic operations?Arithmetic operations can also be specified by the subtract, divide, and multiply built-in functions.
The operator that perform arithmetic operation are called arithmetic operators .
Operators which let do basic mathematical calculation
+ Addition operation : Adds values on either side of the operator.
For example 4 + 2 = 6
- Subtraction operation : Subtracts right hand operand from left hand operand.
for example 4 -2 = 2
* Multiplication operation : Multiplies values on either side of the operator
For example 4*2 = 8
Mandla spent one-quarter of his pocket money on sweets
Let x be the total amount of pocket money Mandla had originally
Solution of (a).
⇒ x - (1/4)x
⇒ (3/4)x
The fraction of pocket money left = 3/4
Solution of (b).
1/4 of pocket money
⇒ (1/4)x
⇒ (1/4)40
⇒ 10
Learn more about Ratio here:
brainly.com/question/1504221
#SPJ2
Sample information: 24 out of 1000 people who were surveyed had type 2 diabetes. Use the above sample information and construct two confidence intervals (one with confidence level of 90% and the other one with confidence level of 99%) to estimate the proportion of people who have type 2 diabetes. What is the relationship between the confidence level and the size of the confidence interval? Is this significant? Why is it important to understand this concept?
Answer:
it is important because the number of people who are infected by the disease is rising
what us 10 to the power of two
the answer is
10² ( ten square )
step by step :
10² = 10 × 10
= 100
Answer: 100
Step-by-step explanation: 10*10=100
The data show the traveler spend- ing in billions of dollars for a recent year for a sample of the states. Find the range, variance, and standard deviation for the data.
20.1 33.5 21.7 58.4 23.2 110.8 30.9
24.0 74.8 60.0
Solution :
Given data :
20.1 33.5 21.7 58.4 23.2 110.8 30.9
24.0 74.8 60.0
n = 10
Range : Arranging from lowest to highest.
20.1, 21.7, 23.2, 24.0, 30.9, 33.5, 58.4, 60.0, 74.8, 110.8
Range = low highest value - lowest value
= 110.8 - 20.1
= 90.7
Mean = [tex]$\frac{\sum x}{n}$[/tex]
[tex]$=\frac{20.1+21.7+23.2+24.0+30.9+33.5+58.4+60.0+74.8+110.8}{10}$[/tex]
[tex]$=\frac{457.4}{10}$[/tex]
[tex]$=45.74$[/tex]
Sample standard deviation :
[tex]$S=\sqrt{\frac{1}{n-1}\sum(x-\mu)^2}$[/tex]
[tex]$S=\sqrt{\frac{1}{10-1}(20.1-45.74)^2+(21.7-45.74)^2+(23.2-45.74)^2+(24.0-45.74)^2+(30.9-45)^2}$[/tex]
[tex]\sqrt{(33.5-45.74)^2+(58.4-45.74)^2+(60.0-45.74)^2+(74.8-45.74)^2+(110.8-45.74)^2}[/tex]
[tex]$S=\sqrt{\frac{1}{9}(657.4+577.9+508.0+472.6+220.2+149.8+160.2+203.3+844.4+4232.8)}$[/tex][tex]$S=\sqrt{\frac{1}{9}(8026.96)}$[/tex]
[tex]$S=\sqrt{891.88}$[/tex]
S = 29.8644
Variance = [tex]S^2[/tex]
[tex]=(29.8644)^2[/tex]
= 891.8823
This table gives a few (x,y) pairs of a line in the coordinate plane.
Answer:
The x-intercept of the line will be (10, 0)
Step-by-step explanation:
start from -12
get to -2...
-12 + (10) = -2
-2 + (10) = 8
therefore, the x-intercept is (10, 0)