Answer:
try to calculate
here some examples
Step-by-step explanation:
Decimal Degrees to Degrees, Minutes, Seconds Calculator
Enter decimal degrees to convert to minutes and seconds. See the formulas below to see how it’s done.
Angle:
Decimal:
47.31
°
degrees, minutes, seconds to decimal
Degrees, Minutes, & Seconds:
47° 18′ 36″
I hope it helps
write the greatest and smallest four digit number by using 7,8,0,9 digit
This graph represents which expression?
Answer:
x >7
Step-by-step explanation:
There is an open circle at 7, which means it cannot equal 7. The line goes to the right
x >7
1. Write the polynomial function that models the given situation.A rectangle has a length of 12 units and a width of 11 units. Squares of x by x units are cut out of each corner, and then the sides are folded up to create an open box. Express the volume V of the box as a polynomial function in terms of x.
2. Write the polynomial function that models the given situation. A square has sides of 24 units. Squares x + 1 by x + 1 units are cut out of each corner, and then the sides are folded up to create an open box. Express the volume V of the box as a function in terms of x.
3. Write the polynomial function that models the given situation. A cylinder has a radius of x + 6 units and a height 3 units more than the radius. Express the volume V of the cylinder as a polynomial function in terms of x.
Answer:
1. (12 - 2x)(11 - 2x)x
2. 4(11 - 2x)²(x + 1)
3. π(x³ + 15x² + 63x + 81)
Step-by-step explanation:
1. Write the polynomial function that models the given situation.
A rectangle has a length of 12 units and a width of 11 units. Squares of x by x units are cut out of each corner, and then the sides are folded up to create an open box. Express the volume V of the box as a polynomial function in terms of x.
Since the length of the rectangle is 12 units and its width 11 units and squares of x by x units are cut from its corners, it implies that a length x is cut from each side. So, the length of the open box is L = 12 - 2x and its width is w = 11 - 2x.
Since the cut corners of the rectangle are folded, the side x which is cut represents the height of the open box, h. so, h = x
So, the volume of the open box V = LWh = (12 - 2x)(11 - 2x)x
2. Write the polynomial function that models the given situation. A square has sides of 24 units. Squares x + 1 by x + 1 units are cut out of each corner, and then the sides are folded up to create an open box. Express the volume V of the box as a function in terms of x.
Since the square has sides of 24 units and squares of x + 1 by x + 1 units are cut from its corners, it implies that a length x + 1 is cut from each corner and the length 2(x + 1) is cut from each side. So, the length of side open box is L = 24 - 2(x + 1) = 24 - 2x - 2 = 24 - 2 - 2x = 22 - 2x = 2(11 - x)
Since the cut corners of the square are folded, the side x + 1 which is cut represents the height of the open box, h. so, h = x + 1
Since the area of the base of the pen box is a square, its area is L² = [2(11 - 2x)]²
So, the volume of the open box V = L²h = [2(11 - 2x)]²(x + 1) = 4(11 - 2x)²(x + 1)
3. Write the polynomial function that models the given situation. A cylinder has a radius of x + 6 units and a height 3 units more than the radius. Express the volume V of the cylinder as a polynomial function in terms of x.
The volume of a cylinder is V = πr²h where r = radius and h = height of cylinder.
Given that r = x + 6 and h is 3 units more than r, h = r + 3 = x + 6 + 3 = x + 9
So, V = πr²h
V = π(x + 3)²(x + 9)
V = π(x² + 6x + 9)(x + 9)
V = π(x³ + 6x² + 9x + 9x² + 54x + 81)
V = π(x³ + 15x² + 63x + 81)
Write the ratio as a fraction in simplest form, with whole numbers in the numerator and denominator. 2.1yd : 1.4yd
9514 1404 393
Answer:
3/2
Step-by-step explanation:
Multiplying numerator and denominator by 10 will convert the ratio to a ratio of whole numbers. Then dividing by the common factor of 7 will reduce it to simplest form.
[tex]\dfrac{2.1\text{ yd}}{1.4\text{ yd}}=\dfrac{2.1\times10}{1.4\times10}=\dfrac{21}{14}=\dfrac{3\times7}{2\times7}=\boxed{\dfrac{3}{2}}[/tex]
(07.03. 07.04 MC)
Part A: The area of a square is (4x2 + 20x + 25) square units. Determine the length of each side of the square by factoring the area expression completely. Show
your work (5 points)
Part B: The area of a rectangle is (4x2 - 9y2) square units. Determine the dimensions of the rectangle by factoring the area expression completely. Show your work
(5 points)
Answer:
A) 4x^2+20x+25=(2x)^2+2*(2x)*5+5^2=(2x+5)^2
Area=(side)^2, side=sqrt(area)=sqrt((2x+5)^2)=2x+5
B) 4x^2-9y^2=(2x-3y)(2x+3y), these are the dimensions of the rectangle
A) The length of each side of the square is (2x + 5).
B) The dimensions of the rectangle are (2x - 3y) and (2x + 3y).
Used the concept of a quadratic equation that states,
An algebraic equation with the second degree of the variable is called a Quadratic equation.
Given that,
Part A: The area of a square is [tex](4x^2 + 20x + 25)[/tex] square units.
Part B: The area of a rectangle is [tex](4x^2 - 9y^2)[/tex] square units.
A) Now the length of each side of the square is calculated by factoring the area expression completely,
[tex](4x^2 + 20x + 25)[/tex]
[tex]4x^2 + (10 + 10)x + 25[/tex]
[tex]4x^2 + 10x + 10x + 25[/tex]
[tex]2x (x + 5) + 5(2x + 5)[/tex]
[tex](2x + 5) (2x+5)[/tex]
Hence the length of each side of the square is (2x + 5).
B) the dimensions of the rectangle are calculated by factoring the area expression completely,
[tex](4x^2 - 9y^2)[/tex]
[tex](2x)^2 - (3y)^2[/tex]
[tex](2x - 3y) (2x + 3y)[/tex]
Therefore, the dimensions of the rectangle are (2x - 3y) and (2x + 3y).
To learn more about the rectangle visit:
https://brainly.com/question/2607596
#SPJ4
I need help ASAP please
Answer:
5:10
6 (-2,0)
7 (-5,6)
8 (5,3)
9 No, ab=8 CD=6
Step-by-step explanation:
write 6x10x10x10x10 with an expont
Answer:
6x10^4
Step-by-step explanation:
b) Use Greens theorem to find∫x^2 ydx-xy^2 dy where ‘C’ is the circle x2 + y2 = 4 going counter clock wise.
It looks like the integral you want to find is
[tex]\displaystyle \int_C x^2y\,\mathrm dx - xy^2\,\mathrm dy[/tex]
where C is the circle x ² + y ² = 4. By Green's theorem, the line integral is equivalent to a double integral over the disk x ² + y ² ≤ 4, namely
[tex]\displaystyle \iint\limits_{x^2+y^2\le4}\frac{\partial(-xy^2)}{\partial x}-\frac{\partial(x^2y)}{\partial y}\,\mathrm dx\,\mathrm dy = -\iint\limits_{x^2+y^2\le4}(x^2+y^2)\,\mathrm dx\,\mathrm dy[/tex]
To compute the remaining integral, convert to polar coordinates. We take
x = r cos(t )
y = r sin(t )
x ² + y ² = r ²
dx dy = r dr dt
Then
[tex]\displaystyle \int_C x^2y\,\mathrm dx - xy^2\,\mathrm dy = -\int_0^{2\pi}\int_0^2 r^3\,\mathrm dr\,\mathrm dt \\\\ = -2\pi\int_0^2 r^3\,\mathrm dr \\\\ = -\frac\pi2 r^4\bigg|_{r=0}^{r=2} \\\\ = \boxed{-8\pi}[/tex]
help
What is 5 added to 3 4?
6. 12
Answer:
8.4
Step-by-step explanation:
jjdijendjndoendidnie
Which equation can be used to find the length of Line segment A C?
Answer:
I don't see the problem.
Step-by-step explanation:
please help me with geometry
Answer:
A. If the side lengths are the same, then a triangle is not scalene.
Step-by-step explanation:
A triangle can be defined as a two-dimensional shape that comprises three (3) sides, three (3) vertices and three (3) angles.
Simply stated, any polygon with three (3) lengths of sides is a triangle.
In Geometry, a triangle is considered to be the most important shape.
Generally, there are three (3) main types of triangle based on the length of their sides and these include;
I. Equilateral triangle: it has all of its three (3) sides and interior angles equal.
II. Isosceles triangle: it has two (2) of its sides equal in length and two (2) equal angles.
III. Scalene triangle: it has all of its three (3) sides and interior angles different in length and size respectively.
Assume that the matrices below are partitioned conformably for block multiplication. Compute the product.
[I 0] [W X]
[K I] [Y Z]
Multiplying block matrices works just like multiplication between regular matrices, provided that component matrices have the right sizes.
[tex]\begin{bmatrix}\mathbf I&\mathbf 0\\\mathbf K&\mathbf I\end{bmatrix}\begin{bmatrix}\mathbf W&\mathbf X\\\mathbf Y&\mathbf Z\end{bmatrix} = \begin{bmatrix}\mathbf{IW}+\mathbf{0Y}&\mathbf{IX}+\mathbf{0Z}\\\mathbf{KW}+\mathbf{IY}&\mathbf{KX}+\mathbf{IZ}\end{bmatrix}[/tex]
[tex]\begin{bmatrix}\mathbf I&\mathbf 0\\\mathbf K&\mathbf I\end{bmatrix}\begin{bmatrix}\mathbf W&\mathbf X\\\mathbf Y&\mathbf Z\end{bmatrix} = \begin{bmatrix}\mathbf W+\mathbf 0&\mathbf X+\mathbf 0\\\mathbf{KW}+\mathbf Y&\mathbf{KX}+\mathbf Z\end{bmatrix}[/tex]
[tex]\begin{bmatrix}\mathbf I&\mathbf 0\\\mathbf K&\mathbf I\end{bmatrix}\begin{bmatrix}\mathbf W&\mathbf X\\\mathbf Y&\mathbf Z\end{bmatrix} = \begin{bmatrix}\mathbf W&\mathbf X\\\mathbf{KW}+\mathbf Y&\mathbf{KX}+\mathbf Z\end{bmatrix}[/tex]
(I assume I is the identity matrix and 0 is the zero matrix.)
Use the substitution methed to solve the system of equations. Choose the correct ordered pair.
2y+5x=13
2y+3x=5
Solve both equations for 2y :
2y + 5x = 13 ==> 2y = 13 - 5x
2y + 3x = 5 ==> 2y = 5 - 3x
Solve for x :
13 - 5x = 5 - 3x
8 = 2x
x = 4
Solve for y :
2y = 13 - 5×4
2y = -7
y = -7/2
As an ordered pair, the solution is then the point (x, y) = (4, -7/2).
A car is traveling at a constant speed of 60 miles per hour. How many feet does it travel in 10 seconds?
Answer:
880 ft.
Step-by-step explanation:
First! We have to establish how many feet the car travels per hour.
60 (number of miles per hour) x 5280 (number of feet in a mile) = 316,800 (number of feet in an hour)
Next, since we know that there are 60 minutes in an hour we are going to divide our "number of feet in an hour" by 60 to get the "number of feet in a minute"
316,800 ÷ 60 = 5280
Once again, we are going to divide our "number of feet in a minute" by 60 to get the "number of feet per second".
5280 ÷ 60 = 88
Finally! We will multiple our "number of feet per second" by 10 to get how many feet the car can travel in 10 seconds.
88 × 10 = 880
So! Our car can travel 880 feet in 10 seconds.
Hope this Helps! :)
Have any questions? Ask below in the comments and I will try my best to answer.
-SGO
identify the roots of the equation and the multiplicities of the roots 8(x - 2)³ = 0
Answer:
The root of the equation is 2 with multiplicity 3
Step-by-step explanation:
8(x-2)^3=0
(x-2)^3=0
The root of the equation is 2 with multiplicity 3
True or false?
A function assigns each value of the independent variable to exactly one
value of the dependent variable.
A. True
B. False
SUB
Answer:
This statement would be true.
Step-by-step explanation:
Find the first five terms of the sequence..
Answer:
The Next fiver tems are - 2, -2,-8,-12,-16
Step-by-step explanation:
Answer:
2,-6,2,-6,2
Step-by-step explanation:
a1 = 2
an = -an-1 -4
Let n =2
a2 = -a1 -4 = -2-4 = -6
Let n=3
a3 = -a2 -4 = - (-6) -4 = +6 -4 = 2
Let n = 4
a4 = -a3 -4 = -2 -4 = -6
Let n=5
a5 = -a4 -4 = -(-6) -4 = +6-4 = 2
I purchased a new Apple iPad on Amazon for $249.00. The tax rate is 8.625%. What is the total purchase price of the iPad?
Answer:
270.47625
Step-by-step explanation:
249 is the original price
(249/100) · 8.625 = 21.47625 the tax total
249 + 21.47625 = 270.47625
PLEASE HELP
Solve the equation for y. Identify the slope and y-intercept then graph the equation.
2y-3x=10
Y=
M=
B=
Please Include a picture of the graph and show your work if you can
Hey there! I'm happy to help!
Here is our equation.
[tex]2y-3x=10[/tex]
Let's add 3x to both sides.
[tex]2y=3x+10[/tex]
Divide both sides by 2.
[tex]y=\frac{3}{2}x+5[/tex]
Here is slope intercept form.
[tex]y=mx+b\\m=slope\\b=y-intercept[/tex]
So, we can just find those two things in the equation, and here are our answers.
[tex]y=\frac{3}{2}x+5\\m=\frac{3}{2}\\b=5[/tex]
The graph is down below. If our y-intercept is 5, then one of our points is (0,5). You can then plug a random x-value into the formula to find another point and then draw the line going through the two points.
[tex]y=\frac{3}{2}(2)+5\\y=3+5\\y=8\\(2,8)[/tex]
Have a wonderful day and keep on learning! :D
In the figure alongside, show that angle(a+b+c+d) = 4 right angles
Answer:
Proved
Step-by-step explanation:
a=180-x
c=a= 180-x
d=180-a = 180-(180-x) =x
b=d=x
adding every angle;
a+b+c+d= 180-x + x + 180-x + x
a+b+c+d = 180+180 = 360
a+b+c+d = 4 *90
The sum of the interior of the quadilateral is equal to 4 right angles.
The point where two lines meet is known as an angle
The given figure is a quadrilateral.
For the quadrilateral
The sum of opposite angles is 180degreesThe sum of all the interior angles is 360degreesAccording to the theorem;
a + c = 180 ...... 1
b + d = 180 ...... 2
Add both equations
a + b + c + d = 180 + 180
a + b + c + d = 360
Note that 1 right angle = 90degrees
4 right angles = 4(90) = 360 degrees
Therefore a + b + c + d = 4 right angles (Proved)
Learn more here: https://brainly.com/question/19546787
Find the equation of a line that is perpendicular to x+y=8 and passes through the point (8, 10).
Answer:
Y = -x + 2
Step-by-step explanation:
y = -x + 8
y = 1x + b
10 = 8 + b
b = 2
Answer:
y-y1=m(x-x1)
y-10=8(x-8)
y-10=8x-64
y-10+64-8x
y+54-8x
y-8x+54
50T Q12 A man wants to buy bags of gravel to cover his driveway. He decides to work out the area of his driveway. 1 bag of gravel covers 14m2 3m Sketch of driveway Not to scale 3m 8m 6m What is the area of his driveway? How many bags of gravel must he buy?
Answer:
hi amki nai patajjdkfkejd
What is the coordinate of point P?
2.3
2.4
2.375
2.25
A number line is just that – a straight, horizontal line with numbers placed at even increments along the length. The coordinate of point p on the given number line is 2.375. The correct option is C.
What is a number line?A number line is just that – a straight, horizontal line with numbers placed at even increments along the length. It’s not a ruler, so the space between each number doesn’t matter, but the numbers included on the line determine how it’s meant to be used.
Given that there are 8 divisions between two whole numbers, now since the point P is on the third division. Therefore, the coordinate of point p will be,
Coordinate of point P = 2 + 3/8
=2 + 0.375
= 2.375
Hence, the coordinate of point p on the given number line is 2.375.
Learn more about the Number line here:
https://brainly.com/question/557284
#SPJ2
SAT scores are normally distributed with a mean of 1,500 and a standard deviation of 300. An administrator at a college is interested in estimating the average SAT score of first-year students. If the administrator would like to limit the margin of error of the 88% confidence interval to 15 points, how many students should the administrator sample? Make sure to give a whole number answer.
Answer:
The administrator should sample 968 students.
Step-by-step explanation:
We have to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1 - 0.88}{2} = 0.06[/tex]
Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].
That is z with a p-value of [tex]1 - 0.06 = 0.94[/tex], so Z = 1.555.
Now, find the margin of error M as such
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
Standard deviation of 300.
This means that [tex]n = 300[/tex]
If the administrator would like to limit the margin of error of the 88% confidence interval to 15 points, how many students should the administrator sample?
This is n for which M = 15. So
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
[tex]15 = 1.555\frac{300}{\sqrt{n}}[/tex]
[tex]15\sqrt{n} = 300*1.555[/tex]
Dividing both sides by 15
[tex]\sqrt{n} = 20*1.555[/tex]
[tex](\sqrt{n})^2 = (20*1.555)^2[/tex]
[tex]n = 967.2[/tex]
Rounding up:
The administrator should sample 968 students.
In a geometric sequence, t4 = 8 and t7 = 216. Find the value of t2
Question 14 plz show ALL STEPS ASAP
Answer:
8/9
Step-by-step explanation:
Let the geometric series have the first term=a and common ratio=r. ATQ, ar^3=8 and ar^6=216. r^3=27. r=3. a=8/3^3=8/27. t2=ar=8/9
Please help I’m really stuck!!
Step 1: Solve for one variable
---I will be using the first equation and solving for a.
a + c = 405
a = 405 - c
Step 2: Substitute into the other equation
---Now that we have a value for a, we can substitute that value into the second equation. Then, we can solve for c.
12a + 5c = 3950
12(405 - c) + 5c = 3950
4860 - 12c + 5c = 3950
-12c + 5c = -910
-7c = -910
c = 130
Step 3: Plug back into the first equation
---We now know one variable, which means we can plug back into our first equation and solve for the other.
a = 405 - c
a = 405 - 130
a = 275
Answer: 275 adults, 130 children
Hope this helps!
2. In a 100m race, Luke was 2m ahead of Azam. Chandra was 3m behind Luke, Maggie was 7m ahead of Chandra. Luke was 5m behind Darren. Who was in the first place?
Answer:
luke won
Step-by-step explanation:
he is 2 meters ahead of azam witch is in 2dn place
Factor 64a^3 -8b^3 Explain all steps.
Answer:
[tex]8(2a- b)(4a^2+ 2ab+ b^2)[/tex]
Step-by-step explanation:
factor out the 8
then you have the sum/difference of cubes..
look that up SOAP: same opposite, always a plus
[tex]64a^3 -8b^3\\8(8a^3 -b^3)[/tex]
[tex]8(2a- b)(4a^2+ 2ab+ b^2)[/tex]
which of these figures has rotational symmetry
9514 1404 393
Answer:
A
Step-by-step explanation:
The parallelogram has rotational symmetry of degree 2. It looks the same after rotation by 180°.
_____
Additional comment
When a figure only looks like itself after a full rotation of 360°, it is said to have rotational symmetry of degree 1. All of the figures here will return to their original appearance after one 360° rotation. So, we assume the intent of the question is to identify figures with a rotational symmetry of degree greater than 1.
Find the measures of angles S and T in the triangle below.