Answer:
16 cents
Step-by-step explanation:
6 divided by 36 = 0.16666667
Evaluate 9x^2y^-2 for x = -3 and y = 2.
324
20 1/4
9(-6)°
1/144
9514 1404 393
Answer:
(b) 20 1/4
Step-by-step explanation:
9(-3)^2(2^-2) = 9(9)(1/4) = 81/4 = 20 1/4
Get brainiest if right!!!
10points if right!!
Answer:
the next three terms, 0.075,0.0375,0.01875 (common ratio 0.5)
the formula is 0.3*0.5^n-1
the formula for finding the nth term of a geometric sequence preset would be
a*r^n-1
a is first term
r is common ratio
Step-by-step explanation:
The Coffee Counter charges $8.00 per pound for Kenyan French Roast coffee and $10.00 per pound for Sumatran coffee. How much of each type should be used to make an 18 pound blend that sells for $9.00 per pound?
The Coffee Counter should mix ___ pounds of Kenyan Roast coffee and ___ pounds of Sumatran coffee to make 18 pounds of a blend that sells for $9.00 per pound.
Answer:
x = 9
y = 9
Step-by-step explanation:
Given :
Let :
Kenyan French roast coffee = x
Cost per x = $8
Sumatran Coffee = y
Cost per y = $10
x + y = 18 - - - - (1)
8x + 10y = 9 * 18 ;
8x + 10y = 162 - - - - (2)
From (1):
x = 18 - y
Put x = 18 - y in (2)
8(18 - y) + 10y = 162
144 - 8y + 10y = 162
2y = 162 - 144
2y = 18
y = 9
x = 18 - y
x = 18 - 9
x = 9
Construct the 90% confidence interval for the proportion of students at the college who have completed their required English 101 course. Enter your answers as decimals (not percents) accurate to three decimal places. The Confidence Interval is
Answer:
The confidence interval has an lower limit of [tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = \pi - 1.645\sqrt{\frac{\pi(1-\pi)}{n}}[/tex] and an upper limit of [tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = \pi + 1.645\sqrt{\frac{\pi(1-\pi)}{n}}[/tex], in which [tex]\pi[/tex] is the sample proportion and [tex]n[/tex] is the size of the sample.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].
90% confidence level
So [tex]\alpha = 0.1[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.1}{2} = 0.95[/tex], so [tex]Z = 1.645[/tex].
The lower limit of this interval is:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = \pi - 1.645\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
The upper limit of this interval is:
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = \pi + 1.645\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
The confidence interval has an lower limit of [tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = \pi - 1.645\sqrt{\frac{\pi(1-\pi)}{n}}[/tex] and an upper limit of [tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = \pi + 1.645\sqrt{\frac{\pi(1-\pi)}{n}}[/tex], in which [tex]\pi[/tex] is the sample proportion and [tex]n[/tex] is the size of the sample.
on an eight-question true-false quiz, a student guesses each answer. What is the proability that the student gets at least one of the answers correct
Answer:
0.9961
Step-by-step explanation:
Number of options per question = 2
P(success), p = 0.5
q = 1 - p = 0.5
Number of trials, n = 8
P(x ≥ 1) = p(x= 1) + p(x=2) +... + p(x = 8)
P(x = x) = nCx * p^x * q^(n-x)
Using a calculator to save computation time :
p(x ≥ 8) = 0.9961
Circle P contains a diameter AB with coordinates A(1, 2) and B(-7, 2).
5a) State the coordinates of the center.
5b) Determine the length of the radius.
5c)Johnny used the above information for the center and radius and come up with the equation below. Do you agree or disagree with his answer? Explain.
PLEASE ANSWER I DONT HAVE MUCH TIME
Answer:
[tex]centre = ( \frac{1 - 7}{2} , \: \frac{2 + 2}{2} ) \\ = ( - 3, \: 2)[/tex]
[tex]length = \sqrt{ {( - 7 - 1)}^{2} + {(2 - 2)}^{2} } \\ = \sqrt{ { - 8}^{2} } \\ = 8 \: units[/tex]
radius = 8÷2
= 4 units
Johnny was right
Sara has 5 blue bows and 7 white bows in a bag for her fellow cheerleaders to wear in their hair for each game. The bows are
pulled out randomly by the team. Determine if the following is an
Independent or a Dependent event. Then find the probability.
1.) Sara pulls out a blue bow and her teammate pulls out a white bow.
Answer: The events are dependent
The probability is 35/132
==============================================================
Explanation:
If the first bow Sara pulls out isn't put back, then the two events are dependent. This is because the probability of pulling a white bow changes depending on what Sara pulls out.
If Sara pulls out a blue bow, then the teammate's chances of pulling a white bow are 7/11 because there are 7 white bows out of 4+7 = 11 left over (or you could compute 5+7-1 = 11).Or if Sara pulls out a white bow, then the chances of a teammate pulling out another white bow is 6/11 instead of 7/11. The probability has changed.So again, it all depends on what Sara does because she goes first. This is of course not the case if Sara puts the bow back. If she put it back, then the chances of the teammate pulling the white bow is 7/12
---------
To find the overall probability of Sara selecting a blue bow and not putting it back, followed by a teammate getting a white bow, we multiply the fractions 5/12 and 7/11 to get (5/12)*(7/11) = 35/132
For more info, search out conditional probability.
Which expression represents the total perimeter of her sandwich, and if x = 1.2, what is the approximate length of the crust?
What is an equation of the line that passes through the points (-2, 3) and (6, -1)?
Answer:
y = (-1/2)×X + 2
Step-by-step explanation:
the steps are in the pic above.
What is the slope of the line?
Answer:
2/3
Step-by-step explanation:
Find two points
(0,-2) and (3,0)
Using the slope formula
m = (y2-y1)/(x2-x1)
= (0- -2)/(3-0)
= (0+2)/(3-0)
= 2/3
Answer:
[tex]\frac{2}{3}[/tex]
Step-by-step explanation:
From the graph, we can see the line passes through the points (3,0) and (0,-2).
The slope of a line, [tex]m[/tex], that passes through points [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] is given by [tex]m=\frac{\Delta y}{\Delta x}=\frac{y_2-y_1}{x_2-x_1}[/tex]
Let [tex](x_1,y_1)\implies (3,0)[/tex] and [tex](x_2,y_2)\implies (0,-2)[/tex].
The slope of the line that passes through these points is:
[tex]m=\frac{-2-0}{0-3}=\frac{-2}{-3}=\boxed{\frac{2}{3}}[/tex]
(a) A color printer prints 23 pages in 7 minutes. How many minutes does it take per page? minutes per page
7 min = 23 pages
To find out the amount of time the color printers to print one page we need to do 7/23 min.
Answer: 7/23
A department store buys 100 shirts at a cost of $2000 and sells them at a selling price of $25 each. Find the percent markup.
Answer:
Mark up % = 25%
Step-by-step explanation:
Cost of 100 shirts = 2000
Cost of 1 shirt = 2000/100 = 20
Selling price of 1shirt = 25
[tex]\% mark \ up = \frac{selling \ price - cost \ price }{cost \ price } \times 100 = \frac{25- 20}{20}\times 100 = \frac{5}{20} \times 100 = 25 \%[/tex]
x2 + 5x + 9.
Find the equation of the axis of symmetry for the parabola y =
Answer:
x = -5/2
Step-by-step explanation:
From the quadratic equation
the axis of symmetry for quadratics of the form
y = ax² + bx + c is
x = -b/2a
x² + 5x + 9
x = -5/2
AD=7, BD=3, DE=6. Find BC
Answer:
the answer to this is 10 i think sorry if it is wrong
Step-by-step explanation:
The triangles are similar and the measure of BC = 60/7 units
What are similar triangles?If two triangles' corresponding angles are congruent and their corresponding sides are proportional, they are said to be similar triangles. In other words, similar triangles have the same shape but may or may not be the same size. The triangles are congruent if their corresponding sides are also of identical length.
Corresponding sides of similar triangles are in the same ratio. The ratio of area of similar triangles is the same as the ratio of the square of any pair of their corresponding sides
Given data ,
Let the first triangle be ΔABC
Let the second triangle be ΔADE
Now , ΔABC and ΔADE are similar triangles
where corresponding sides of similar triangles are in the same ratio
So , AD / AB = DE / BC
On simplifying , we get
7 / 10 = 6 / BC
Multiply by BC on both sides , we get
BC ( 7/10 ) = 6
Multiply by 10 on both sides , we get
7BC = 60
Divide by 7 on both sides , we get
BC = 60/7
Hence , the measure of BC = 60/7 units
To learn more about similar triangles click :
https://brainly.com/question/29378183
#SPJ3
WILL GIVE BRAINLIEST IF CORRECT (Right angle) Trigonometry please help! Explain what you did to get the answer aswell
Anya contributed $1,200 toward the purchase
of a $2,000 computer. Her brother contributed
$240 toward the same computer. Her parents
provided the rest of the money for the computer. What percentage of the total cost of the computer did Anya's parents pay?
Answer:
Parent's share would be : 28%
Step-by-step explanation:
Cost of the computer = $2000
Anya's share = $1200
Brother's share = $240
Parents paid rest. That will be : 2000 - 1200 - 240 = $560
Percentage of parents share :
[tex]\frac{560}{2000} \times 100 = 28 \%[/tex]
U.S. women aged 20 or over have a mean HDL cholesterol levels of 55mg/dl with a standard deviation of 15 mg/dl. Assume that the distribution is Normal. What proportion of women have HDL below 45 mg/dl or less?
Answer:
0.2514 = 25.14% of women have HDL below 45 mg/dl or less.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean HDL cholesterol levels of 55mg/dl with a standard deviation of 15 mg/dl.
This means that [tex]\mu = 55, \sigma = 15[/tex]
What proportion of women have HDL below 45 mg/dl or less?
This is the p-value of Z when X = 45. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{45 - 55}{15}[/tex]
[tex]Z = -0.67[/tex]
[tex]Z = -0.67[/tex] has a p-value of 0.2514
0.2514 = 25.14% of women have HDL below 45 mg/dl or less.
24 percent discount from 85 dallors
Answer: Purchase Price: $85. Discount: (85 x 24)/100 = $20.40
Final Price:
85 - 20.40 = $64.60
Answer:
63.60, or 63.6, or 67, how u round it
Step-by-step explanation:
Smartness
Find c. Round to the nearest tenth:
Step-by-step explanation:
what is the question please
can anybody help me please? I'll give brainlest for correct answer
Answer:
1) 40 degrees
2) 140 degrees
3) 110 degrees
4) 70 degrees
5) 70 degrees
Explanation:
Use the curved protractor they have created you, and count every dash as 10 degrees. Keep in mind that the whole thing equals 180 degrees, and half would equal 90 degrees. Some call it a right angle.
Let me know if my answer is correct for the other users that will see this message. Thank you!
-kiniwih426
MULTIPLE CHOICE LaShawn designs websites for local
businesses. He charges $25 an hour to build a website, and
charges $15 an hour to update websites once he builds them.
He wants to earn at least $100 every week, but he does not
want to work more than 6 hours each week. What is a possible
solution to describe how many hours LaShawn can spend
building a website (x) and updating a website (y) in a week?
A (1,4)
B (1,6)
C (2,3)
D (3, 3)
graph the line with intercept 6 and slope
[tex] - \frac{3}{2} [/tex]
Given:
The y-intercept of a line = 6
The slope of the line = [tex]-\dfrac{3}{2}[/tex]
To find:
The graph of the given line.
Solution:
The slope intercept form of a line is:
[tex]y=mx+b[/tex]
Where, m is the slope and b is the y-intercept.
Putting [tex]m=-\dfrac{3}{2}[/tex] and [tex]b=6[/tex] in the above equation, we get
[tex]y=-\dfrac{3}{2}x+6[/tex]
At [tex]x=0[/tex],
[tex]y=-\dfrac{3}{2}(0)+6[/tex]
[tex]y=0+6[/tex]
[tex]y=6[/tex]
At [tex]x=2[/tex],
[tex]y=-\dfrac{3}{2}(2)+6[/tex]
[tex]y=-3+6[/tex]
[tex]y=3[/tex]
Plot these two points (0,6) and (2,3) on a coordinate plane and connect them by a straight line to get the graph of the required line.
The required graph is shown below.
I’ll mark you as brainliest!
Answer:
Area of rectangle = l*b
11*9
99
I think it will help you.
Answer:
first is rectangle
L = 11 m
W = 9m
area = LW
area = 11 × 9
area = 99 sq.m
2nd is circle
D = 21 .6
r = 1/2 × 21.6
r = 10.8
area = 22/7 ×10.8²
area = 336.582 sq.
3rd triangle
B = 8 in
H = 4.6 in
area = 1/2 × 8 × 4.6
area = 18.4 sq.in
4th parallelogram
b = 12 in
h = 3 in
area = b × h
area = 12 × 13
area = 156 sq.in
5th trapezoid
h = 7cm
b1 = 4 cm
b2 = 10 cm
area = ½ ×7 (4 + 10
area =49 sq.cm
Step-by-step explanation:
hope this will help you
A teacher offers 8 extra credit assignments.what is the domain of this graph
Find the perimeter of the figure.
What is the value of k?
9514 1404 393
Answer:
k = 10
Step-by-step explanation:
The exterior angle is equal to the sum of the remote interior angles.
115° = (4k +5)° +(6k +10)°
115 = 10k +15 . . . . . . . . . . . divide by °, simplify
100 = 10k . . . . . . . . . . . . subtract 15
10 = k . . . . . . . . . . . . . . divide by 10
In November, the rain in a certain valley tends to fall in storms of several days duration. The unconditional probability of rain on any day of the month is 0.600. But the probability of rain on a day that follows a rainy day is 0.900, and the probability of rain on a day following a nonrainy day is 0.300. Find the probability of rain on November 1 and 2. but not on November 3. Find the probability of rain on November 1 and 2, but not on November 3.
Answer:
0.0594 = 5.94% probability of rain on November 1 and 2, but not on November 3.
Step-by-step explanation:
Rain on November 1:
0.9 of 0.6(rain on Oct 31).
0.3 of 0.4(not rain on Oct 31).
Rain on November 2:
Considering rain on November 1, 0.9 probability of rain.
Rain on November 3:
Considering rain on November 2, 0.1 probability of rain.
Find the probability of rain on November 1 and 2, but not on November 3.
Multiplicating the probabilities:
[tex]p = (0.9*0.6+0.3*0.4)*0.9*0.1 = 0.0594[/tex]
0.0594 = 5.94% probability of rain on November 1 and 2, but not on November 3.
which number represents 4%
Answer:
4
Step-by-step explanation:
Which is a simplified form of the expression -4(n + 1) – (n + 2)?A.2n + 3B.-3n – 2C.-4n – 5D.-5n – 6
the answer is d. -5n - 6 :)
Let g(x) be the transformation of f(x)= 3x - 5 when it is translated 6 units up followed by a horizontal stretch by a factor of 3/2.
g(x) = Blank 1X +Blank 2
Answer:
g(x) = 2x + 1
Step-by-step explanation:
f(x)= 3x - 5 when it is translated 6 units up
Translating a function a units is adding a to the function. So
[tex]3x - 5 + 6 = 3x + 1[/tex]
Horizontal stretch by a factor of 3/2.
This means that [tex]g(x) = f(\frac{2x}{3})[/tex], that is. So
[tex]g(x) = 3(\frac{2x}{3}) + 1 = 2x + 1[/tex]
Then
g(x) = 2x + 1