Answer:
7x10 ^-10
Step-by-step explanation:
Vertical plane R intersects horizontal plane P. Points D, and B are on the line of the intersecting planes. Point F is on the top half of plane R. Point G is on the bottom half of plane G. Point C is on the left half of plane P. Point E is on the right side of plane P. There is a line formed between points C and E. Point H to above and to the right of the planes. Point L is below and to the left of the planes.
The intersection of plane R and plane P is
.
Point
is not on plane P.
Line C E and Line D B intersect at point
.
Answer:
The intersection of plane R and plane P is line DB
Point H is not on plane P.
CE and DB intersect at point D
Explanation:
got it right on edge 2021 :)
Answer:
there right^
Step-by-step explanation:
edge 22
In the picture below, which lines are lines of symmetry for the figure?
A. only 2
B. 1, 2, and 3
C. 2 and 4
D. 1 and 3
Answer:
Option C
Step-by-step explanation:
2 and 4 makes the figure look symmetrical
The required lines of symmetry are 2 and 4. option C is correct.
A given picture line of symmetry is to be determined from 1, 2, 3, and 4.
the line is a curve showing the shortest distance between 2 points.
A line of symmetry is defined as the line that draw across any curve or shape, The curve and shape have equal proportion across the line, that line is called the line of symmetry.
Clearly, from observation, it is seen that line 1 and line 3 does not have the same proportion of area across it, so this is not a line of symmetry.
Line 2 and line 4, is lines of symmetry because it has equal proportion of the area across it.
Thus, the required lines of symmetry are 2 and 4. option C is correct.
Learn more about lines here:
brainly.com/question/2696693
#SPJ5
The population of Americans age 55 and older as a percentage of the total population is approximated by the function f(t) = 10.72(0.9t + 10)^0.3 (0 <= t < = 20)
where t is measured in years, with t=0 corresponding to the year 2000.
Required:
a. At what rate was the percentage of Americans age 55 and older changing at the beginning of 2002?
b. At what rate will the percentage of Americans age 55 and older be changing in 2017?
c. What will be the percentage of the population of Americans age 55 and older in 2017?
Answer:
Part A)
About 0.51% per year.
Part B)
About 0.30% per year.
Part C)
About 28.26%.
Step-by-step explanation:
We are given that the population of Americans age 55 and older as a percentange of the total population is approximated by the function:
[tex]f(t) = 10.72(0.9t+10)^{0.3}\text{ where } 0 \leq t \leq 20[/tex]
Where t is measured in years with t = 0 being the year 2000.
Part A)
Recall that the rate of change of a function at a point is given by its derivative. Thus, find the derivative of our function:
[tex]\displaystyle f'(t) = \frac{d}{dt} \left[ 10.72\left(0.9t+10\right)^{0.3}\right][/tex]
Rewrite:
[tex]\displaystyle f'(t) = 10.72\frac{d}{dt} \left[(0.9t+10)^{0.3}\right][/tex]
We can use the chain rule. Recall that:
[tex]\displaystyle \frac{d}{dx} [u(v(x))] = u'(v(x)) \cdot v'(x)[/tex]
Let:
[tex]\displaystyle u(t) = t^{0.3}\text{ and } v(t) = 0.9t+10 \text{ (so } u(v(t)) = (0.9t+10)^{0.3}\text{)}[/tex]
Then from the Power Rule:
[tex]\displaystyle u'(t) = 0.3t^{-0.7}\text{ and } v'(t) = 0.9[/tex]
Thus:
[tex]\displaystyle \frac{d}{dt}\left[(0.9t+10)^{0.3}\right]= 0.3(0.9t+10)^{-0.7}\cdot 0.9[/tex]
Substitute:
[tex]\displaystyle f'(t) = 10.72\left( 0.3(0.9t+10)^{-0.7}\cdot 0.9 \right)[/tex]
And simplify:
[tex]\displaystyle f'(t) = 2.8944(0.9t+10)^{-0.7}[/tex]
For 2002, t = 2. Then the rate at which the percentage is changing will be:
[tex]\displaystyle f'(2) = 2.8944(0.9(2)+10)^{-0.7} = 0.5143...\approx 0.51[/tex]
Contextually, this means the percentage is increasing by about 0.51% per year.
Part B)
Evaluate f'(t) when t = 17. This yields:
[tex]\displaystyle f'(17) = 2.8944(0.9(17)+10)^{-0.7} =0.3015...\approx 0.30[/tex]
Contextually, this means the percetange is increasing by about 0.30% per year.
Part C)
For this question, we will simply use the original function since it outputs the percentage of the American population 55 and older. Thus, evaluate f(t) when t = 17:
[tex]\displaystyle f(17) = 10.72(0.9(17)+10)^{0.3}=28.2573...\approx 28.26[/tex]
So, about 28.26% of the American population in 2017 are age 55 and older.
A rectangle has a perimeter equal to 24 if we consider its width x how could we talk about its length y in terms of x what are the possible values of x what aree the possible values of y
2x + 2y must equal 24. 24 - 2x = 2y and 24 - 2y = 2x. Therefore, 12 - y = x. x could be able to add with y to get 12.
example: x = 4, y = 8. (4 + 4 + 8 + 8 = 16 + 8 = 24)
x = 9, y = 3. (9 + 9 + 3 + 3 = 24)
x = 5, y = 7. (5 + 5 + 7 + 7 = 24)
How many ways are there to choose three distinct integers between 1 and 20 inclusive such that the numbers form an arithmetic sequence?
*please try to answer by tomorrow/
Answer:
probability of the product of the chosen integers being a multiple of 3 is P(E)= 1 - (91/285)
=194/285 or 0.6807.
Step-by-step explanation:
The sample space of all possible choices of three integers from the set {1,2,…..,20} has C(20,3) = (20×19×18)/3! elements.
The complement of the event space E consists of all possible choices of three integers from the complement of the set of all the multiples of 3 in the above set because the product of the chosen integers is a multiple of 3 if and only if at least one of them is a multiple of 3. Hence we have to choose three elements from the set {1,2,4,5,7,8,10,11,13,14,16,17,19,20} which has 14 elements.
Hence
|E'| = C(14,3)
= 14×13×12/3!.
Therefore probability P(E')
= |E'|/|S|
= (14×13×12)/(20×19×18)
= (14×13×2)/(20×19×3)
=(7×13)/(5×19×3)
= 91/285.
Therefore the required probability of the product of the chosen integers being a multiple of 3 is P(E)= 1 - (91/285)=194/285 or 0.6807.
Show that Reſiz) = -Im(z)
Step-by-step explanation:
[tex]re(i(x + yi) = - im(x + yi) \\ re(xi - y) = - im(x + yi) \\ - y = - (y) \\ - y = - y \\ proved \: is \: correct[/tex]
on a particular day, a man spent 12 minutes more driving to his office than driving home. His average speed from home to office is 12km/h and from office to home is 60m/h .How far is the man home to his office
Answer:
distance between home and office = 3 km
Step-by-step explanation:
Infues Gentamicin 100 mg in 100ml in 15 minutes. What will you set the infusion pump at ml/hr
9514 1404 393
Answer:
400 mL/h
Step-by-step explanation:
The required rate is ...
(100 mL)/(1/4 h) = 100×(4/1) mL/h = 400 mL/h
plez halppp mehh ;-;
Answer:
False
True
True
Step-by-step explanation:
Angle 1 cannot be equal to angle 4. Even by just viewing one can see that they can't be equal.
Angle 1 and 2 when combined give a 90 degree angle going from a to c.
Angle 3 and 4 form a 180 degree angle.
HOPE THIS HELPED
∫∫D(x2 + y2 + 2020)dxdy D: x2 +y2 +2ax ≤ 0 (a > 0)
Answer:
good morning
Step-by-step explanation:
hope u have a nice day
The recursive formula for a geometric sequence is given below.
f(1) = 5
(n) = 3 . f(n − 1), for n > 2
What is the 7th term in the sequence?
Answer:
3645
Step-by-step explanation:
f(1)=5
f(2)=3*5=15.
f(3)=45, basically it's a geometric sequence with formula an=5*(3)^(n-1). The 7th term is 5*(3)^6=3645
Convert the following equation
into standard form.
y = 7 - 7x
[?]x + y = []
Answer:
[tex]y = 7 - 7x \\ y + 7x = 7 \\ 7x + y = 7[/tex]
Answer:
7x + y = 7
Step-by-step explanation:
The equation of a line in standard form is
Ax + By = C ( A is a positive integer and B, C are integers )
Given
y = 7 - 7x ( add 7x to both sides )
7x + y = 7 ← in standard form
Given: AABC, AC = 5
m C = 90°
m A= 22°
Find: Perimeter of AABC
A
C
B
9514 1404 393
Answer:
perimeter ≈ 12.4 units
Step-by-step explanation:
The side adjacent to the angle is given. The relationships useful for the other two sides are ...
Tan = Opposite/Adjacent
Cos = Adjacent/Hypotenuse
From these, we have ...
opposite = 5·tan(22°) ≈ 2.02
hypotenuse = 5/cos(22°) ≈ 5.39
Then the perimeter is ...
P = a + b + c = 2.02 + 5 + 5.39 = 12.41
The perimeter of ∆ABC is about 12.4 units.
A certain bell rings every 60 minutes. Another Bell rings every 90 minutes. Both bells begin ringing at midnight (12:00 a.m). How many more times will both bells ring by 1 p.m
Answer in picture
….
There is a path of width 2.5 m inside around a square garden of length 45m.
(a) Find the area of the path.
(b) How many tiles will be required to pave in the path by the square tiles of length 0.5m? Find it.
Help ! 도와주세요, 제발 :(
Answer:
2.5+2.5+45+45
=95.0m
therefore area of the square= 95.0m
45m×0.5=45.5÷95=
Step-by-step explanation:
2.5m
2.5 m tiles are required
[tex]area = 2.5 \times 45 = 192.5 \: squared \: cenimetre \\ \\ no \: of \: tiles = 0.5 \times 0.5 = 0.25 \\ 192.5 \div 0.25 = 770tiles[/tex]
Determine whether the integral is divergent or convergent. If it is convergent, evaluate it.
[infinity]
â« e^-1.3x dx
1
4(x+4) =2x-1
8
Show work
Answer:
4(x+4) =2x-18
4x+16=2x‐18
4x–2x= –18 –16
2x= – 34
x= –34/2
x= – 17
I hope I helped you^_^
Step-by-step explanation:
[tex]thank \: you[/tex]
please help me with geometry
Answer:
x = 5Step-by-step explanation:
triangol BCD = triangle BDA
so
3x - 1 = 34 - 2x
5x = 35
x = 35 : 5
x = 5Answer:
x = 7
Step-by-step explanation:
BD is an angle bisector , so
∠ ABD = ∠ DBC , that is
3x - 1 = 34 - 2x ( add 2x to both sides )
5x - 1 = 34 ( add 1 to both sides )
5x = 35 ( divide both sides by 5 )
x = 7
If 1100 square centimeters of material is available to make a box with a square base and an open top, find the largest possible volume of the box. Round to two decimal places if necessary.
volume= a^2 * h
area= a^2+4ah
take the second equation, solve for h
4ah=1100-a^2
h=1100/4a -1/4 a now put that expression in volume equation for h.
YOu now have a volume expression as function of a.
take the derivative, set to zero, solve for a. Then put that value back into the volume equation, solve for Volume.
Cited from jiskha
A lighthouse casts a
revolving beam of light as far as the pier. What
is the area that the light covers?
Answer:
First, let's find how far away the pier is.
Using the distance formula, we can see that the pier is [tex]\sqrt{58}[/tex] units away.
So, the radius is sqrt 58.
Area = pi (r)^2
So, the area is 182.82 square units.
Let me know if this helps!
We have that The area that the light covers is is mathematically given as
[tex]A=\pi x^2[/tex]
From the Question we are told that
Revolving beam of light as far as the pier
Let distance to pier be x
Generally the revolving beam turns a complete angle of 360
Therefore
Its goes in a circle
The area that the light covers is is mathematically given as
[tex]A=\pi r^2[/tex]
[tex]A=\pi x^2[/tex]
In conclusion
The area that the light covers is is mathematically given as
[tex]A=\pi x^2[/tex]
For more information on this visit
https://brainly.com/question/16418397
Can someone help me solve this and explain how to solve if possible please?
how many wall are there in your room? what are the shape of the floor and ceiling in your room ? how can you find the area of each shape?prepare the answer. present the conclusion in the form of report. plz answer the question in right.how many wall are there in your room? what are the shape of the floor and ceiling in your room ? how can you find the area of each shape?prepare the answer. present the conclusion in the form of report. plz answer the question in right. plz answer the question steps by step.
solve for x ! please help . (show work)
Answer:
x = -3
Step-by-step explanation:
12 - 4x-5x = 39
Combine like terms
12 - 9x = 39
subtract 12 from each side
12 -9x-12 = 39-12
-9x = 27
Divide by -9
-9x/-9 = 27/-9
x = -3
150 is 40% of what number
Step-by-step explanation:
hope it helps youu.........
A family has a day of 7 activities planned: shopping, picnic, hiking, swimming, bike ride, video games, and movie. To make it more adventurous they decide to randomly pick the order of the activities out of a hat. Find the probability that bike ride and movie are chosen consecutively, in either order.
Answer:
[tex]Pr= \frac{1}{21}[/tex]
Step-by-step explanation:
Given
[tex]n(S) = 7[/tex] --- number of games
Required
Probability of bike and movie in consecutive order
This probability is represented as:
[tex]Pr = P(Bike\ and\ Movie) \ or\ P(Movie\ or\ Bike)[/tex]
So, we have:
[tex]Pr = P(Bike\ and\ Movie) \ +\ P(Movie\ or\ Bike)[/tex]
The probability is an illustration of selection without replacement;
So, we have:
[tex]P(Bike\ and\ Movie) = P(Bike) * P(Movie)[/tex]
[tex]P(Bike\ and\ Movie) = \frac{n(Bike)}{n(S)} * \frac{n(Movie)}{n(S) - 1}[/tex] ---- without replacement
Bike and Movie appear in the game list 1 time.
So, the equation becomes
[tex]P(Bike\ and\ Movie) = \frac{1}{7} * \frac{1}{7 - 1}[/tex]
[tex]P(Bike\ and\ Movie) = \frac{1}{7} * \frac{1}{6}[/tex]
[tex]P(Bike\ and\ Movie) = \frac{1}{42}[/tex]
Similarly,
[tex]P(Movie\ and\ Bike) = \frac{1}{42}[/tex]
So, we have:
[tex]Pr = P(Bike\ and\ Movie) \ +\ P(Movie\ or\ Bike)[/tex]
[tex]Pr= \frac{1}{42}+\frac{1}{42}[/tex]
Take LCM
[tex]Pr= \frac{1+1}{42}[/tex]
[tex]Pr= \frac{2}{42}[/tex]
[tex]Pr= \frac{1}{21}[/tex]
Select the correct answer from each drop-down menu.
The table represents function f, and the graph represents function g.
-2
- 1
1
2
3
4
0
х
Ax)
7
0
-5
-8
-9
-8
-5
у
A
6
4
2
g
X
.
-21
2
2
The line of symmetry for function fis
and the line of symmetry for function gis
The y-intercept of function fis
the y-intercept of function g.
Over the interval [2, 4], the average rate of change of function fis
the average rate of change of function g.
Answer:
Line of symmetry of f is x=2 and the line of symmetry for function g is x=1 as the graph starts repeating itself after x=1. Y intercept is the point at which x is 0, for f it is - 5 and for g it is - 6. Rate of change in interval [2,4] is given by (f(4)-f(2))/2=2 for f and for g it is, (g(4)-g(2))/2=-4
The true statements are:
The line of symmetry for function f is x = 2The line of symmetry for function g is x = 1The y-intercept of function f is -5The y-intercept of function g is -6Over the interval [2, 4], the average rate of change of function f is half the average rate of change of function g.Line of SymmetryThis is the point where the function is divided into equal halves.
From the figure, the table and graph are divided at points x = 2, and x = 1.
So, the line of symmetry for function f is x = 2 and the line of symmetry for function g is x = 1
Y-InterceptThis is the point where the function has an x value of 0
From the figure, the y values when x = 0 are -5 and -6
So, the y-intercept of function f is -5 and the y-intercept of function g is -6
Average rate of changeThis is calculated as:
[tex]m = \frac{y_2 - y_1}{x_2 -x_1}[/tex]
For function f, we have:
[tex]m = \frac{-5 + 9}{4-2}[/tex]
[tex]m = \frac{4}{2}[/tex]
[tex]m = 2[/tex]
For function g, we have:
[tex]m = \frac{2+ 6}{4-2}[/tex]
[tex]m = \frac{8}{2}[/tex]
[tex]m = 4[/tex]
By comparison,
[tex]m_f = 0.5 \times m_g[/tex]
Hence, over the interval [2, 4], the average rate of change of function f is half the average rate of change of function g.
Read more about functions and graphs at:
https://brainly.com/question/13136492
Because the P-value is ____ than the significance level 0.05, there ____ sufficient evidence to support the claim that there is a linear correlation between lemon imports and crash fatality rates for a significance level of α= 0.05.
Do the results suggest that imported lemons cause carfatalities?
a. The results suggest that an increase in imported lemons causes car fatality rates to remain the same.
b. The results do not suggest any cause-effect relationship between the two variables.
c. The results suggest that imported lemons cause car fatalities.
d. The results suggest that an increase in imported lemons causes in an increase in car fatality rates.
Answer:
H0 : correlation is equal to 0
H1 : correlation is not equal to 0 ;
Pvalue < α ;
There is sufficient evidence
r = 0.945 ;
Pvalue = 0.01524
Step-by-step explanation:
Given the data :
Lemon_Imports_(x) Crash_Fatality_Rate_(y)
230 15.8
264 15.6
359 15.5
482 15.3
531 14.9
Using technology :
The regression equation obtained is :
y = 16.3363-0.002455X
Where, slope = - 0.002455 ; Intercept = 16.3363
The Correlation Coefficient, r = 0.945
H0 : correlation is equal to 0
H1 : correlation is not equal to 0 ;
The test statistic, T:
T = r / √(1 - r²) / (n - 2)
n = 5 ;
T = 0.945 / √(1 - 0.945²) / (5 - 2)
T = 0.945 / 0.1888341
T = 5.00439
The Pvalue = 0.01524
Since Pvalue < α ; Reject the Null and conclude that there is sufficient evidence to support the claim.
The cylinders shown are similar. What is the volume of the larger cylinder?
Step-by-step explanation:
Ratio of height (large to small) = ratio of radii (large to small).
(h / 14) = (8 / 2)
h / 14 = 4
h = 56
The height of the larger cylinder is 56m.
Volume of cylinder is
V = πr2h
V = π(8)2(56)
V = 3584π
Please help me with this, But I can’t decide if it’s A or B. Please explain !!!
I think it's the letter A.
Answer:
[tex]m=\frac{M}{\sqrt{1-\frac{v^{2} }{c^{2} } } } \\\\\\m{\sqrt{1-\frac{v^{2} }{c^{2} } }=M[/tex]
[tex]\sqrt{1-\frac{v^{2} }{c^{2} }} =\frac{M}{m} \\\\\\1-\frac{v^{2} }{c^{2} }=\frac{M^{2}}{m^{2}} \\\\\\-\frac{v^{2} }{c^{2} }=\frac{M^{2}}{m^{2}} -1\\\\v^{2}=(-c^{2}) (\frac{M^{2}}{m^{2}} -1)\\\\v=\sqrt{(-c^{2}) (\frac{M^{2}}{m^{2}} -1)} =\sqrt{(c^{2})(-1)(\frac{M^{2}}{m^{2}} -1)} =c\sqrt{(-1)(\frac{M^{2}}{m^{2}} -1)} =c\sqrt{1-\frac{M^{2}}{m^{2}}}[/tex]
I would think it's A ¯\_ (ツ)_/¯
The bowling alley and the swimming pool both offer birthday party rentals the bowling alley coast $5 per person plus a $15 room rental fee. The swimming pool costs $4 per person plus a $12 room rental fee.you have $40 at which location can you invite more people
Answer:
Swimming pool
Step-by-step explanation:
Let's say that we invite x people. The cost of the bowling alley will be $15 for the room, and we add $5 dollars for each person. Therefore, we can represent the cost of the bowling alley as
5 * x + 15
Similarly, the cost of the swimming pool is
4 * x + 12
To find the maximum of the function, one thing we can do is set the expressions of the cost equal to 40. This will give us the amount of people we can invite for exactly 40 dollars. Because cost increases with amount of people, this will give us the maximum number of people we can invite with $40.
We thus have
5 * x+ 15 = 40
subtract 15 from both sides to isolate the x and its coefficient
25 = 5 * x
divide both sides by 5 to isolate x
25/5 = x = 5
We can therefore invite 5 people to the bowling alley
4 * x+ 12 = 40
subtract both sides by 12 to isolate the x and its coefficient
28 = 4 * x
divide both sides by 4 to isolate x
x = 7
Therefore, we can invite 7 people to the swimming pool. As 7 > 5, we can invite more people to the swimming pool.
A quicker way to solve this could be by looking at the cost of each location. Because the bowling alley costs more both per person and for the room, and there is no way to decrease the cost except by decreasing the amount of people, there is no way that the bowling alley could get as many people as the swimming pool with the same amount of money