Answer:
Answer:
Solution given:
f(x)=5x-3
let
y=f(x)
y=5x-3
interchanging role of x and y
x=5y-3
x+3=5y
y=[tex]\frac{x+3}{5}[/tex]
$o,
f-¹(x)=[tex]\frac{x+3}{5}[/tex]
we conclude that
f-¹(x)≠g(x)
Each pair of function are not inverses.
g(x)=x/5+3
let g(x)=y
y=x/5+3
interchanging role of x and y
x=y/5+3
x-3=y/5
doing crisscrossed multiplication
5(x-3)=y
y=5x-15
g-¹(x)=5x-15
So
g-¹(x)≠f-¹(x)
Each pair of function are not inverses.
PLEASEE HELP ME ASAPPP (geometry)
Answer:AE=EC và BF=FC => EF là đường trung bình của tam giác ABC
=> EF // và bằng 1/2 AB
=> AB = 16
Step-by-step explanation:
Answer:
AB=16
Step-by-step explanation:
Midsegment Theorem states that the segment connecting the midpoints of two sides of a triangle is parallel to the third side and half as long.
The mid-segment of a triangle, which joins the midpoints of two sides of a triangle, is parallel to the third side of the triangle and half the length of that third side of the triangle.
AD=DB
AD+DB=AB=2EF
AB=2×8=16
190 of 7
6 7 8 9 10
-3
4
5
6
The slope of the line shown in the graph is
and the intercept of the line is
Answer:slope 2/3
Y-int 6
Step-by-step explanation:
A chocolate chip cookie manufacturing company recorded the number of chocolate chips in a sample of 60 cookies. The mean is 22.36 and the standard deviation is2.97 . Construct a 80% confidence interval estimate of the standard deviation of the numbers of chocolate chips in all such cookies.
Answer:
2.665 < σ < 3.379
Step-by-step explanation:
Given :
s = 2.97
Sample size, n = 60
α = 80%
χ² Critical value (two - tailed), df = (60-1) = 59
χ² = 45.577 ; χ² = 73.279
The 80% confidence interval for the standard deviation :
s * √(n - 1) / χ² critical
2.97 * √(60 - 1) / 73.279 < σ < 2.97 * √(60 - 1) / 45.577
2.665 < σ < 3.379
I will give brainliest if you answer properly.
Answer:
See below
Step-by-step explanation:
a)
[tex]2\sin(x) +\sqrt{3} =0 \implies 2\sin(x)=-\sqrt{3} \implies \boxed{\sin(x)=-\dfrac{\sqrt{3}}{2} }[/tex]
[tex]\therefore x=\dfrac{4\pi }{3}[/tex]
But note, as sine does represent the [tex]y[/tex] value, [tex]\dfrac{5\pi }{3}[/tex] is also solution
Therefore,
[tex]x=\dfrac{4\pi }{3} \text{ and } x=\dfrac{5\pi }{3}[/tex]
This is the solution for [tex]x\in[0, 2\pi ][/tex], recall the unit circle.
Note: [tex]\sin(x)=-\dfrac{\sqrt{3}}{2} \implies \sin(x)=\sin \left(\pi +\dfrac{\pi }{3} \right)[/tex]
b)
[tex]\sqrt{3} \tan(x) + 1 =0 \implies \tan(x) = -\dfrac{1}{\sqrt{3} } \implies \boxed{ \tan(x) = -\dfrac{\sqrt{3} }{3} }[/tex]
Once
[tex]\tan(x) = -\dfrac{\sqrt{3} }{3} \implies \sin(x) = -\dfrac{1}{2} \text{ and } \cos(x) = \dfrac{\sqrt{3} }{2}[/tex]
As [tex]\tan(x) = \dfrac{\sin(x)}{\cos(x)}[/tex]
[tex]\therefore x=-\dfrac{\pi }{6}[/tex]
c)
[tex]4\sin^2(x) - 1 = 0 \implies \sin^2(x) = \dfrac{1}{4} \implies \boxed{\sin(x) = \pm \dfrac{\sqrt{1} }{\sqrt{4} } = \pm \dfrac{1}{2}}[/tex]
Therefore,
[tex]\sin(x)=\dfrac{1}{2} \implies x=\dfrac{\pi }{6} \text{ and } x=\dfrac{5\pi }{6}[/tex]
[tex]\sin(x)=-\dfrac{1}{2} \implies x=\dfrac{7\pi }{6} \text{ and } x=\dfrac{11\pi }{6}[/tex]
The solutions are
[tex]x=\dfrac{\pi }{6} \text{ and } x=\dfrac{5\pi }{6} \text{ and }x=\dfrac{7\pi }{6} \text{ and } x=\dfrac{11\pi }{6}[/tex]
If the lengths of the legs of a right triangle are 5 and 12, what is the length of the hypotenuse?
Answer:
13
Step-by-step explanation:
If we have a right triangle, we can use the Pythagorean theorem to find the hypotenuse
a^2+b^2 = c^2 where a and b are the legs and c is the hypotenuse
5^2 + 12^2 = c^2
25+144= c^2
169 = c^2
Take the square root of each side
sqrt(169) = sqrt(c^2)
13= c
Answer:
The length of the hypotenuse is 13.
Step-by-step explanation:
[tex]a^{2}[/tex] = [tex]b^2 + c^2[/tex]
[tex]a^2 = 12^2 + 5^2[/tex]
[tex]a^2 = 144 + 25[/tex]
[tex]a^2 = 169[/tex]
a=[tex]\sqrt{169}[/tex]
a= 13
Here we use the idea of the Pythagoras' theorem. Which suggests that [tex]a^{2}[/tex] = [tex]b^2 + c^2[/tex] in which [tex]a^{2}[/tex] is the hypotenuse of the triangle and [tex]b^2[/tex] and [tex]c^{2}[/tex] are the two other lengths of the triangle.
HOPE THIS HELPED
I'm interval notation please
9514 1404 393
Answer:
(-2, 4]
Step-by-step explanation:
-21 ≤ -6x +3 < 15 . . . . given
-24 ≤ -6x < 12 . . . . . . subtract 3
4 ≥ x > -2 . . . . . . . . . . divide by -6
In interval notation, the solution is (-2, 4].
__
Interval notation uses a square bracket to indicate the "or equal to" case--where the end point is included in the interval. A graph uses a solid dot for the same purpose. When the interval does not include the end point, a round bracket (parenthesis) or an open dot are used.
Carmen Abdul and David sent a total of 78 text messages over their cell phones during the weekend . Abdul sent 10 fewer messages then Carmen . David sent two times as many messages as Abdul how many messages did they each send?
Answer:
Carmen:27
Abdul:17
David=34
Step-by-step explanation:
Carmen+Abdul+David = 78
Carmen-Abdul=10
David=2Abdul
Carmen=Abdul+10
Carmen+Abdul+David = Abdul+10+Abdul+2Abdul=78
4Abdul=68
Abdul = 68/4=17
Carmen = 17+10=27
David = 2 * 17 = 34
27+17+34=78
Emily, Yani and Joyce have a total of 3209 stickers. Yani has 2 times
as many stickers as Joyce. Emily has 279 more stickers than Yani. How
many more stickers does Emily have than Joyce?
Answer:
279+x
Step-by-step explanation:
Emily + Yani + Joyce=3209 stickers
if Yani has 2 times as many stickers as Joyce:this statement states that Joyce has x stickers and Yani has 2x stickers because x multiplied by 2"Emily has 279 more stickers than Yani":therefore the equation for Emily will be ;279+2xhow many stickers does Emily have than Joyce:
(279+2x)-(x)
279+2x-x
=279+x
Lainey is looking for a new apartment and her realtor keeps calling her with new listings . The calls only take a few minutes , but a few minutes here and there are really starting to add up . She's having trouble concentrating on her work . What should Lainey do ? a ) Tell her realtor she can only receive text messages b ) Limit the time spent on each call c ) Turn off her phone until she is on a break d ) Call her realtor back when customers won't see her on the phone
Answer:
c ) Turn off her phone until she is on a break
a farmer needs 5 men to clear his farm in 10 days. How many men will he need if he must finish clearing the farm in two days if they work at the same rate?
Answer:
25 workers
Step-by-step explanation:
If you like my answer than please mark me brainliest thanks
,
pls help me asap !!!
Answer:
11
Step-by-step explanation:
Hopefully you can see that this is an isosceles triangle and remembering the inequality theorem of a triangle (4,4,11 triangle cannot exist). Iso triangle has two side the same length - as well as two angles the same.
look at the image below
Answer:
117.8
Step-by-step explanation:
Surface area = πr²+πrl (whee r = radius and l = slant height)
= π×3²+π×3×9.5
= 75π/2
= 117.8
Use absolute value to express the distance between -12 and -15 on the number line
A: |-12-(-15)|= -37
B: |-12-(-15)|= -3
C: |-12-(-15)|= 3
D: |-12-(-15)|= 27
Given the function f(x) = -5x + 2, find the range ofly for x = -1, 0, 1.
O 7, 2, -3
O 7, 2, 3
O-7, -2, 3
0-7, -2, -3
Answer:
A
Step-by-step explanation:
f(-1)=7, f(0)=2, f(1)=-3
Can someone please help solve this equation thank you
Answer:
A and B
Step-by-step explanation:
Both points are in the shaded/blue zone
I hope this helps!
pls ❤ and give brainliest pls
Answer:
Yea both A and B are correct.
Step-by-step explanation:
if you can see you can put (-12,0) inside the shaded triangle also for (-10,1)
you can give brainlist to the person above :D
father of economics
The quotient of -8 and the sum of a and b
Hi! I'm happy to help!
To solve this, you need to know what all of the terms mean. Quotient means division, and sum means addition. Knowing this we can set up our expression.
Because there is an operation inside of an operation (addition inside of division) we use parenthesis.
-8÷(a+b)
I hope this was helpful, keep learning! :D
Suppose scores on exams in statistics are normally distributed with an unknown population mean and a population standard deviation of three points. A random sample of 36 scores is taken and gives a sample mean of 68. Find a 85 % confidence interval estimate for the population mean exam score. Explain what the confidence interval means
this the answer of queastions
Step-by-step explanation:
67.18,68.82
Let mu be the true population mean of statistics exam scores. We have a large random samples of n=36 scores with a sample mean of 68.we know that the population standard deviation is sigma=3.A pivotal quantity is 3^sqrt(36)=(3/6)=68(1/2) which is approximately normally distributed. Therefore the 85%confidence interval is 68-(1/2)(1.6449), 68+(1/2)(1.6449) i.e (67.18,68.82)
Solve this equation for x. Round your answer to the nearest hundredth.
1 = In(x + 7)
Answer:
[tex]\displaystyle x \approx -4.28[/tex]
General Formulas and Concepts:
Pre-Algebra
Equality PropertiesAlgebra II
Natural logarithms ln and Euler's number eStep-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle 1 = ln(x + 7)[/tex]
Step 2: Solve for x
[Equality Property] e both sides: [tex]\displaystyle e^1 = e^{ln(x + 7)}[/tex]Simplify: [tex]\displaystyle x + 7 = e[/tex][Equality Property] Isolate x: [tex]\displaystyle x = e - 7[/tex]Evaluate: [tex]\displaystyle x = -4.28172[/tex]e^1 = x+7
e - 7 = x
x = -4.28
(2+1/2) (2^2-1+1/4) find the expression in the form of cubes and differences of two terms.
Answer:
Consider the following identity:
a³ - b³ = (a + b)(a² - ab + b²)Let a = 2, b = 1/2
(2 + 1/2)(2² - 2*1/2 + 1/2²) = 2³ - (1/2)³ =8 - 1/8Use the algebraic identity given below
[tex]\boxed{\sf a^3-b^3=(a+b)(a^2-ab+b^2)}[/tex]
[tex]\\ \sf\longmapsto (2+\dfrac{1}{2})(2^2-1+\dfrac{1}{4})[/tex]
[tex]\\ \sf\longmapsto (2+\dfrac{1}{2})(2^2-2\times \dfrac{1}{2}+\dfrac{1}{2}^2)[/tex]
Here a =2 and b=1/2[tex]\\ \sf\longmapsto 2^3-\dfrac{1}{2}^3[/tex]
[tex]\\ \sf\longmapsto 8-\dfrac{1}{8}[/tex]
Is this the correct answer?
Answer:
25.40
Step-by-step explanation:
tickets ( 2 at 10.95 each) = 2* 10.95 = 21.90
popcorn ( 1 at 7.50) = 7.50
Total cost before discount
21.90+7.50=29.40
subtract the discount
29.40-4.00 =25.40
Answer:
Yep! That's correct!
Step-by-step explanation:
We know that Marilyn and her sister are each getting a ticket that cost $10.95. They are also getting a $7.50 popcorn to share. Let's add those values up.
(10.95 * 2) + 7.50 {Multiply 10.95 by 2 to get 21.90.}
21.90 + 7.50 {Add 7.50 to 21.90 to get 29.40}
$29.40 (without the credit) in toal
A credit on a movie reward card functions as a discount, so what we need to do next is subtract 4 from 29.40. That will get us $25.40 as the total cost.
After doing the math, I can deduce that your answer is correct!
Which of the fractions below are less than 2/5? Select two.
Answer:
1/8 is less than
Step-by-step explanation:
i dont see any fractions below gona have to edit your answer
use quadratic formula to solve the following equation
9514 1404 393
Answer:
x = 2 or x = 9
Step-by-step explanation:
To use the quadratic formula, we first need the equation in standard form for a quadratic. We can get there by multiplying the equation by 3(x -3).
2(3) +4(3(x -3)) = (x +4)(x -3)
6 +12x -36 = x² +x -12
x² -11x +18 = 0
Using the quadratic formula to find the solutions, we have ...
[tex]x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}=\dfrac{-(-11)\pm\sqrt{(-11)^2-4(1)(18)}}{2(1)}\\\\x=\dfrac{11\pm\sqrt{49}}{2}=\{2,9\}[/tex]
The solutions are x=2 and x=9.
find the quotient 1/5 / (-5/7) =
Answer:
-7/25
Step-by-step explanation:
1/5 ÷ (-5/7)
Copy dot flip
1/5 * -7/5
-7/25
5 Cece draws these two figures to prove there is more
than one parallelogram with a 40° angle between a
2-cm side and a 6-cm side. Is Cece correct? Explain.
2 cm
40
4.
2 cm
Answer:
chash greatly ta 45uerywryrsyrsyrs
A shop sells a particular of video recorder. Assuming that the weekly demand for the video recorder is a Poisson variable with the mean 3, find the probability that the shop sells. . (a) At least 3 in a week. (b) At most 7 in a week. (c) More than 20 in a month (4 weeks).
Answer:
a) 0.5768 = 57.68% probability that the shop sells at least 3 in a week.
b) 0.988 = 98.8% probability that the shop sells at most 7 in a week.
c) 0.0104 = 1.04% probability that the shop sells more than 20 in a month.
Step-by-step explanation:
For questions a and b, the Poisson distribution is used, while for question c, the normal approximation is used.
Poisson distribution:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
[tex]P(X = x) = \frac{e^{-\lambda}*\lambda^{x}}{(x)!}[/tex]
In which
x is the number of successes
e = 2.71828 is the Euler number
[tex]\lambda[/tex] is the mean in the given interval.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
The Poisson distribution can be approximated to the normal with [tex]\mu = \lambda, \sigma = \sqrt{\lambda}[/tex], if [tex]\lambda>10[/tex].
Poisson variable with the mean 3
This means that [tex]\lambda= 3[/tex].
(a) At least 3 in a week.
This is [tex]P(X \geq 3)[/tex]. So
[tex]P(X \geq 3) = 1 - P(X < 3)[/tex]
In which:
[tex]P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2)[/tex]
Then
[tex]P(X = x) = \frac{e^{-\lambda}*\lambda^{x}}{(x)!}[/tex]
[tex]P(X = 0) = \frac{e^{-3}*3^{0}}{(0)!} = 0.0498[/tex]
[tex]P(X = 1) = \frac{e^{-3}*3^{1}}{(1)!} = 0.1494[/tex]
[tex]P(X = 2) = \frac{e^{-3}*3^{2}}{(2)!} = 0.2240[/tex]
So
[tex]P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2) = 0.0498 + 0.1494 + 0.2240 = 0.4232[/tex]
[tex]P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2) = 1 - 0.4232 = 0.5768[/tex]
0.5768 = 57.68% probability that the shop sells at least 3 in a week.
(b) At most 7 in a week.
This is:
[tex]P(X \leq 7) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7)[/tex]
In which
[tex]P(X = x) = \frac{e^{-\lambda}*\lambda^{x}}{(x)!}[/tex]
[tex]P(X = 0) = \frac{e^{-3}*3^{0}}{(0)!} = 0.0498[/tex]
[tex]P(X = 1) = \frac{e^{-3}*3^{1}}{(1)!} = 0.1494[/tex]
[tex]P(X = 2) = \frac{e^{-3}*3^{2}}{(2)!} = 0.2240[/tex]
[tex]P(X = 3) = \frac{e^{-3}*3^{3}}{(3)!} = 0.2240[/tex]
[tex]P(X = 4) = \frac{e^{-3}*3^{4}}{(4)!} = 0.1680[/tex]
[tex]P(X = 5) = \frac{e^{-3}*3^{5}}{(5)!} = 0.1008[/tex]
[tex]P(X = 6) = \frac{e^{-3}*3^{6}}{(6)!} = 0.0504[/tex]
[tex]P(X = 7) = \frac{e^{-3}*3^{7}}{(7)!} = 0.0216[/tex]
Then
[tex]P(X \leq 7) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7) = 0.0498 + 0.1494 + 0.2240 + 0.2240 + 0.1680 + 0.1008 + 0.0504 + 0.0216 = 0.988[/tex]
0.988 = 98.8% probability that the shop sells at most 7 in a week.
(c) More than 20 in a month (4 weeks).
4 weeks, so:
[tex]\mu = \lambda = 4(3) = 12[/tex]
[tex]\sigma = \sqrt{\lambda} = \sqrt{12}[/tex]
The probability, using continuity correction, is P(X > 20 + 0.5) = P(X > 20.5), which is 1 subtracted by the p-value of Z when X = 20.5.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{20 - 12}{\sqrt{12}}[/tex]
[tex]Z = 2.31[/tex]
[tex]Z = 2.31[/tex] has a p-value of 0.9896.
1 - 0.9896 = 0.0104
0.0104 = 1.04% probability that the shop sells more than 20 in a month.
The probability of the selling the video recorders for considered cases are:
P(At least 3 in a week) = 0.5768 approximately.P(At most 7 in a week) = 0.9881 approximately.P( more than 20 in a month) = 0.0839 approximately.What are some of the properties of Poisson distribution?Let X ~ Pois(λ)
Then we have:
E(X) = λ = Var(X)
Since standard deviation is square root (positive) of variance,
Thus,
Standard deviation of X = [tex]\sqrt{\lambda}[/tex]
Its probability function is given by
f(k; λ) = Pr(X = k) = [tex]\dfrac{\lambda^{k}e^{-\lambda}}{k!}[/tex]
For this case, let we have:
X = the number of weekly demand of video recorder for the considered shop.
Then, by the given data, we have:
X ~ Pois(λ=3)
Evaluating each event's probability:
Case 1: At least 3 in a week.
[tex]P(X > 3) = 1- P(X \leq 2) = \sum_{i=0}^{2}P(X=i) = \sum_{i=0}^{2} \dfrac{3^ie^{-3}}{i!}\\\\P(X > 3) = 1 - e^{-3} \times \left( 1 + 3 + 9/2\right) \approx 1 - 0.4232 = 0.5768[/tex]
Case 2: At most 7 in a week.
[tex]P(X \leq 7) = \sum_{i=0}^{7}P(X=i) = \sum_{i=0}^{7} \dfrac{3^ie^{-3}}{i!}\\\\P(X \leq 7) = e^{-3} \times \left( 1 + 3 + 9/2 + 27/6 + 81/24 + 243/120 + 729/720 + 2187/5040\right)\\\\P(X \leq 7) \approx 0.9881[/tex]
Case 3: More than 20 in a month(4 weeks)
That means more than 5 in a week on average.
[tex]P(X > 5) = 1- P(X \leq 5) =\sum_{i=0}^{5}P(X=i) = \sum_{i=0}^{5} \dfrac{3^ie^{-3}}{i!}\\\\P(X > 5) = 1- e^{-3}( 1 + 3 + 9/2 + 27/6 + 81/24 + 243/120)\\\\P(X > 5) \approx 1 - 0.9161 \\ P(X > 5) \approx 0.0839[/tex]
Thus, the probability of the selling the video recorders for considered cases are:
Learn more about poisson distribution here:
https://brainly.com/question/7879375
A ball is thrown from an initial height of
1 meter with an initial upward velocity of
1 m/s. The ball's height h
(in meters) after t
seconds is given by the following. h=1+30t-5t^2
Find all values of t
for which the ball's height is 11
meters.
Round your answer(s) to the nearest hundredth.
Answer:
Step-by-step explanation:
If we are looking for the times that the ball was 11 meters off the ground, we sub in 11 for the height on the left and solve for t:
[tex]11=-5t^2+30t+1[/tex] and
[tex]0=-5t^2+30t-10[/tex] and factor this however it is you are factoring in class to solve for t to get
t = .35 seconds and t = 5.6 seconds
Because the ball reaches this point in its way up and then passes it again on its way down, the ball will have 2 times at this height.
the mean salary if of 5 employees is $35900. the median is $37000. the mode is $382000. If the median payed employee gets a $3100 raise, then…
New median:
New mode:
Answer:
Step-by-step explanation:
New median:40100
New mode:385100
the age of furaha is 1/2 of the age of her aunt if the sum of their ages is 54 years. find the age of her aunt
Answer:
I think it is twenty seven
[tex]\sqrt{25}[/tex]
Answer:
5
Step-by-step explanation:
Calculate the square root of 25 and get 5.