Answer:
9
Step-by-step explanation:
f(x) = 2x² – 3x
Let x=3
f(3) = 2 * 3^2 - 3*3
= 2 *9 - 9
= 18-9
= 9
Answer:
f(3) = 9Step-by-step explanation:
[tex]f(x) = 2x^2 -3x\\ f(3) = ?\\\\ f(3) = 2(3)^2 -3(3)\\ f(3) = 2(9) - 9\\ f(3) = 18- 9\\ f(3) = 9[/tex]
determine the image of the point p[-3,10) under the translation [5,-7]
[tex](-3+5,10-7)=(2,3)[/tex]
solve this equation -2x+9=-5x-15
Answer:
x = -8
I hope this helps!
Evaluate the following expression. −8 × (−10) −7× 1/−1
Answer:
87Step-by-step explanation:
[tex]-8\left(-10\right)-7 \times \frac{1}{-1}=87\\\\\mathrm{Apply\:rule}\:-\left(-a\right)=a\\\\=8\times \:10-7\times \frac{1}{-1}\\\\8\times \:10=80\\\\7\times \frac{1}{-1}=-7\\\\=80-\left(-7\right)\\\\\mathrm{Apply\:rule}\:-\left(-a\right)=a\\\\=80+7\\\\=87[/tex]
I need help factoring this question, Factor 4(20) + 84.
Answer:
164
Step-by-step explanation:
B for brackets
O for of
D for division
M for multiplication
A for addition
S for subtraction
You first start with the brackets (20) and multiply with 4 which is equal to 80 and then add it to 84 which makes 164
I hope this helps
Solve. 4x−y−2z=−8 −2x+4z=−4 x+2y=6 Enter your answer, in the form (x,y,z), in the boxes in simplest terms. x= y= z=
Answer:
(-2, 4, 2)
Where x = -2, y = 4, and z = 2.
Step-by-step explanation:
We are given the system of three equations:
[tex]\displaystyle \left\{ \begin{array}{l} 4x -y -2z = -8 \\ -2x + 4z = -4 \\ x + 2y = 6 \end{array}[/tex]
And we want to find the value of each variable.
Note that both the second and third equations have an x.
Therefore, we can isolate the variables for the second and third equation and then substitute them into the first equation to make the first equation all one variable.
Solve the second equation for z:
[tex]\displaystyle \begin{aligned} -2x+4z&=-4 \\ x - 2 &= 2z \\ z&= \frac{x-2}{2}\end{aligned}[/tex]
Likewise, solve the third equation for y:
[tex]\displaystyle \begin{aligned} x+2y &= 6\\ 2y &= 6-x \\ y &= \frac{6-x}{2} \end{aligned}[/tex]
Substitute the above equations into the first:
[tex]\displaystyle 4x - \left(\frac{6-x}{2}\right) - 2\left(\frac{x-2}{2}\right)=-8[/tex]
And solve for x:
[tex]\displaystyle \begin{aligned} 4x+\left(\frac{x-6}{2}\right)+(2-x) &= -8 \\ \\ 8x +(x-6) +(4-2x) &= -16 \\ \\ 7x-2 &= -16 \\ \\ 7x &= -14 \\ \\ x &= -2\end{aligned}[/tex]
Hence, x = -2.
Find z and y using their respective equations:
Second equation:
[tex]\displaystyle \begin{aligned} z&=\frac{x-2}{2} \\ &= \frac{(-2)-2}{2} \\ &= \frac{-4}{2} \\ &= -2\end{aligned}[/tex]
Third equation:
[tex]\displaystyle \begin{aligned} y &= \frac{6-x}{2}\\ &= \frac{6-(-2)}{2}\\ &= \frac{8}{2}\\ &=4\end{aligned}[/tex]
In conclusion, the solution is (-2, 4, -2)
Answer:
x = -2
y =4
z=-2
Step-by-step explanation:
4x−y−2z=−8
−2x+4z=−4
x+2y=6
Solve the second equation for x
x = 6 -2y
Substitute into the first two equations
4x−y−2z=−8
4(6-2y) -y -2 = 8
24 -8y-y -2z = 8
-9y -2z = -32
−2(6-2y)+4z=−4
-12 +4y +4z = -4
4y+4z = 8
Divide by 4
y+z = 2
z =2-y
Substitute this into -9y -2z = -32
-9y -2(2-y) = -32
-9y -4 +2y = -32
-7y -4 = -32
-7y =-28
y =4
Now find z
z = 2-y
z = 2-4
z = -2
Now find x
x = 6 -2y
x = 6 -2(4)
x =6-8
x = -2
True or false? If false give counterexample The product of a rational number and an integer is not an integer
Answer:
False
Step-by-step explanation:
Required
State if the product of rational numbers and integer is an integer
The statement is false and the proof is as follows
Literally, rational numbers are decimal numbers that can be represented as a fraction of two integers;
Take for instance: 0.2, 0.5, 2.25, etc.
When any of these numbers is multiplied by an integer, the resulting number can take any of two forms;
1. It can result to an integer:
For instance;
[tex]0.2 * 5 = 1[/tex]
[tex]0.5 * 4 = 2[/tex]
[tex]2.25 * 8 = 18[/tex]
2. It can result in a decimal number
For instance;
[tex]0.2 * 3 = 0.6[/tex]
[tex]0.5 * 5 = 2.5[/tex]
[tex]2.25 * 7 = 15.75[/tex]
From (1) above, we understand that the product can result in an integer.
Hence, the statement is false
You double the radius of a circle. Predict what will happen tothe circle’s circumference and what will happen to its area. Test yourprediction for a few circles. Use a different radius for each circle. Thenpredict how doubling a circle’s diameter will affect its circumferenceand area. Test your prediction for a few circles with different diameters.
Answer:
When radius is doubled:
Circumference becomes double.
Area becomes four times.
When diameter is doubled:
Circumference becomes double.
Area becomes four times.
Step-by-step explanation:
Given that
Radius of a circle is doubled.
Diameter of circle is doubled.
To study:
The effect on circumference and area on doubling the radius and diameter.
Solution/explanation:
Let us discuss about the formula for circumference and area.
Formula for Circumference of a circle in form of radius:
[tex]C =2\pi r[/tex]
It is a linear equation in 'r'. So by doubling the radius will double the circumference.
Formula for Area of a circle in form of radius:
[tex]A =\pi r^2[/tex]
It is a quadratic equation in 'r'. So by doubling the radius will make the area as four times the earlier area.
Testing using example:
Let the initial radius of a circle = 7 cm
Initial circumference = [tex]2 \times \frac{22}{7} \times 7 = 44 cm[/tex]
Initial area = [tex]\frac{22}{7} \times 7 \times 7 =154 cm^2[/tex]
After doubling:
Radius = 14 cm
circumference = [tex]2 \times \frac{22}{7} \times 14 = 88 cm[/tex] (Twice the initial circumference)
area = [tex]\frac{22}{7} \times 14 \times 14 =616 cm^2[/tex] (4 times the initial area)
------------------------------------
Formula for Circumference of a circle in form of Diameter:
[tex]C =\pi D[/tex]
It is a linear equation in 'D'. So by doubling the diameter will double the circumference.
Formula for Area of a circle in form of diameter:
[tex]A =\dfrac{1}{4}\pi D^2[/tex]
It is a quadratic equation in 'D'. So by doubling the Diameter will make the area as four times the earlier area.
Testing using example:
Let the initial diameter of a circle = 28 cm
Initial circumference = [tex]\frac{22}{7} \times 28 = 88 cm[/tex]
Initial area = [tex]\frac{1}{4}\times \frac{22}{7} \times 28 \times 28 =616cm^2[/tex]
After doubling:
Diameter = 56 cm
circumference = [tex]\frac{22}{7} \times 56= 176 cm[/tex] (Twice the initial circumference)
area = [tex]\frac{1}{4}\times \frac{22}{7} \times 56 \times 56 =2464cm^2[/tex] (4 times the initial area)
So, the answer is justified:
When radius is doubled:
Circumference becomes double.
Area becomes four times.
When diameter is doubled:
Circumference becomes double.
Area becomes four times.
The graph of f(x) = StartRoot x EndRoot is reflected over the y-axis. Use the graphing calculator to graph this reflection. Which list contains three points that lie on the graph of the reflection? (–81, 9), (–36, 6), (–1, 1) (1, –1), (16, –4), (36, –6) (–49, 7), (–18, 9), (–1, 1) (1, –1), (4, –16), (5, –25)
Answer:
(–81, 9), (–36, 6), (–1, 1) are the correct three points.
Step-by-step explanation:
Given the function:
[tex]f(x) =\sqrt x[/tex]
Please refer to the attached image.
The green line shows the graph of actual function.
It is reflected over y axis.
The reflected graph is shown in black color in attached image.
When reflected over y axis, the sign of variable [tex]x[/tex] changes from Positive to Negative.
So, the resultant function becomes:
[tex]f(x)=\sqrt{-x}[/tex]
i.e. we will have to give the values of x as negative now.
so, the options in which value of x is negative are the possible answers only.
The possible answers are:
(–81, 9), (–36, 6), (–1, 1) and
(–49, 7), (–18, 9), (–1, 1)
Now, we will check the square root function condition.
In the 2nd option, (–18, 9) does not satisfy the condition.
So, the correct answer is:
(–81, 9), (–36, 6), (–1, 1)
Answer:
A on E2020
Step-by-step explanation:
:)
Please answer this question now in two minutes
Answer:
m∠C = 102°
Step-by-step explanation:
This diagram is a Quadrilateral inscribed in a circle
The first step is to determine what m∠B
is
The sum of opposite angles in an inscribed quadrilateral is equal to 180°
m∠D + m∠B = 180°
m∠B = 180° - m∠D
m∠B = 180° - 80°
m∠B = 100°
Second step is we proceed to determine the exterior angles of the circle
m∠ADC = 2 × m∠B
m∠ADC = 2 × 100°
m∠ADC = 200°
m∠ADC = m∠CD + m∠AD
m∠AD = m∠ADC - m∠CD
m∠AD = 200° - 116°
m∠AD = 84°
The third step is to determine m∠BAD
m∠BAD = m∠AD + m∠AB
m∠BAD = 84° + 120°
m∠BAD = 204°
The final step Is to determine what m∠C is
It is important to note that:
m∠BAD is Opposite m∠C
Hence
m∠C = 1/2 × m∠BAD
m∠C = 1/2 × 204
m∠C = 102°
Two birds sit at the top of two different trees. The distance between the first bird and a birdwatcher on the ground is 32 feet. The distance between the birdwatcher and the second bird is 45 feet. A triangle is created from point Bird Watcher, point First Bird, and point Second Bird. Angle First Bird is a right angle, and angle Second Bird measures x degrees. What is the angle measure, or angle of depression, between this bird and the birdwatcher? Round your answer to the nearest tenth. 35.4° 44.7° 45.3° 54.6°
Answer:
Step-by-step explanation:
When you draw out that picture (and very good description, btw!) basically what you have is a right triangle that has a base of 32 and a hypotenuse of 45. The right angle is one of the base angles and x is the vertex angle. We need to find the vertex angle before we can find the angle of depression from the second bird to the watcher. The side of length 32 is opposite the angle x, and 45 is the hypotenuse, so the trig ratio we need is the only one that directly relates side opposite to hypotenuse, which is the sin ratio:
[tex]sin(x)=\frac{32}{45}[/tex] and
sin(x) = .711111111
Go to your calculator and hit the 2nd button then the sin button and on your screen you will see:
[tex]sin^{-1}([/tex]
and after that open parenthesis enter in your decimal .711111111 and hit equals. You should get an angle of 45.325. That's angle x. But that's not the angle of depression. The angle of depression is the one complementary to angle x.
Angle of depression = 90 - angle x and
Angle of depression = 90 - 45.325 so
Angle of depression = 44.67 or 44.7 degrees.
Answer:
Its 45.3!!!
Step-by-step explanation:
Graph the image of H(-8,5) after a reflection over the x-axis.
Answer ?
Answer: plot a point at (-8, -5)
The y coordinate flips from positive to negative, or vice versa, when we reflect over the horizontal x axis. The x coordinate stays the same.
The rule can be written as [tex](x,y) \to (x,-y)[/tex]
Please Help. Will Mark Brainliest Answer. A container of juice is taken from the refrigerator and poured into a pitcher. The temperature of the juice will warm to room temperature over time. The temperature of the juice can be modeled by the following function: f(t)=72−32(2.718)−0.06t, where t is measured in minutes after the juice is taken out of the refrigerator. Use the drop-down menus to complete the explanation of how the function models the juice warming over time. Dropdown possible answers: When t = 0, the temperature of the juice is -0.06, 0, 2.718, 32, 40, 72 degrees. As time increases, -32(2.718)^-0.06t gets close and closer to -0.06, 0, 2.718, 32, 40, 72. So, f(t) gets close and closer to -0.06, 0, 2.718, 32, 40, 72.
Answer:
When t= 0
f(t)= 40 degrees
The value of −32(2.718)^−0.06t approach 0 as t increases
If −32(2.718)^−0.06t approach 0 as t increases then f(t)=72−32(2.718)−0.06t approach 72
Step-by-step explanation:
The temperature of the juice can be modeled by the following function: f(t)=72−32(2.718)−0.06t, where t is measured in minutes after the juice is taken out of the refrigerator.
f(t)=72−32(2.718)^−0.06t
When t= 0
f(t)=72−32(2.718)^−0.06(0)
f(t)=72−32(2.718)^(0)
f(t)=72−32(1)
f(t)=72−32
f(t)= 40 degrees
As t increases −32(2.718)^−0.06t
Let t= 1
=−32(2.718)^−0.06(1)
= −32(2.718)^−0.06
= -30.14
Let t = 2
=−32(2.718)^−0.06(2)
=−32(2.718)^−0.12
=−32(0.8869)
= -28.38
The value of −32(2.718)^−0.06t approach 0 as t increases
If −32(2.718)^−0.06t approach 0 as t increases then f(t)=72−32(2.718)−0.06t approach 72
When t = 0, the temperature of the juice is 40°.
As time increases, [tex]-32(2.718)^{-0.06\times 0}[/tex] gets closer and closer to 0.
So, f(t) gets close to 72°
Function representing the temperature of of the juice at any time 't' is,
[tex]f(t)=72-32(2.718)^{-0.06t}[/tex]
1). If t = 0,
[tex]f(0)=72-32(2.718)^{-0.06\times 0}[/tex]
[tex]=72-32(1)[/tex]
[tex]=40[/tex] degrees
2). If [tex]t\rightarrow \infty[/tex],
[tex]-\frac{1}{32(2.718)^{0.06t}} \rightarrow 0[/tex]
[As denominator of the fraction becomes larger and larger with the increase in the value of t, value of fraction gets smaller and smaller]
3). if [tex]t\rightarrow \infty[/tex], [tex]f(t)\rightarrow 72[/tex]
Therefore, when t = 0, the temperature of the juice is 40°.
As time increases, [tex]-32(2.718)^{-0.06\times 0}[/tex] gets closer and closer to 0.
So, f(t) gets close to 72°.
Learn more,
https://brainly.com/question/10283950
Can someone help me with this please it’s algebra 2
Answer:
7 8 9
Step-by-step explanation:
PLEASE HELP, WILL GIVE BRAINLIEST IF CORRECT!!!! (08.06 MC) Mike and his friends bought cheese wafers for $2 per packet and chocolate wafers for $1 per packet at a carnival. They spent a total of $25 to buy a total of 20 packets of wafers of the two varieties. Part A: Write a system of equations that can be solved to find the number of packets of cheese wafers and the number of packets of chocolate wafers that Mike and his friends bought at the carnival. Define the variables used in the equations. (5 points) Part B: How many packets of chocolate wafers and cheese wafers did they buy? Explain how you got the answer and why you selected a particular method to get the answer. (5 points)
Answer:
x = 5 , y = 15
Step-by-step explanation:
You can solve this using substitution.
Let the quantity of cheese wafers be denoted by x and the quantity of chocolate wafers denoted by y
2x + 1y = 25
x + y = 20
These two equations are the answer to part A, (remember to include the above prompt which says what x and y denote).
For part B I used substitution because it was more applicable to the question then addition or elimination.
ACTUAL WORK
Set 2x + 1y = 25 equal to x
x = 25 - y / 2
Replace x with y in the second equation
(25 - y / 2) + y = 20
And solve for y
y = 15
Since we know what y is we can replace y in the second equation and find what x is
x + 15 = 20
Solve for x
x = 5
Answer:
5 Cheese Wafers and 15 Chocolate Wafers
Step-by-step explanation:
70000000000x50000000000000
Answer:
Step-by-step explanation: Multiply
70000000000*50000000000000=3.5e+24
4x=24 solve equation
Answer:
x=6
Step-by-step explanation:
Rearrange:
Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :
4*x-(24)=0
Step by step solution :
STEP
1
:
Pulling out like terms
1.1 Pull out like factors :
4x - 24 = 4 • (x - 6)
Equation at the end of step
1
:
STEP
2
:
Equations which are never true
2.1 Solve : 4 = 0
This equation has no solution.
A a non-zero constant never equals zero.
Solving a Single Variable Equation:
2.2 Solve : x-6 = 0
Add 6 to both sides of the equation :
x = 6
One solution was found :
x = 6
Answer:
x= 24/ 4
Step-by-step explanation:
You can simplify it
x= 6/1 which is x= 6
A class has 25 students in it. 4 students drop the class. What is a reasonable estimate for the percentage of students that dropped?
Answer:
16% drop
Step-by-step explanation:
4/25 drop
Multiply by 4/4
16/100
16% drop
Answer:
16%
Step-by-step explanation:
SInce 4 students left the class, and there are 25 students, let's make it a fraction.
4/25.
As it is asking for a percentage though we could simply convert our fraction to a percentage.
Simply divide the numerator (4) by the denominator (25).
This gives us 0.16.
Which is 16%.
Help.. ~Probability
7. Find the probability of choosing a red counter if a counter is chosen from a box that contains the following counters.
A. 3 red and 3 yellow
B. 3 red and 5 yellow
C. 1 red, 1 yellow and 2 blue
D. 5 red, 12 green and 7 orange
E. 10 red only
F. 6 blue and 4 green
A.
[tex]|\Omega|=6\\|A|=3\\\\P(A)=\dfrac{3}{6}=\dfrac{1}{2}[/tex]
B.
[tex]|\Omega|=8\\|A|=3\\\\P(A)=\dfrac{3}{8}[/tex]
C.
[tex]|\Omega|=4\\|A|=1\\\\P(A)=\dfrac{1}{4}[/tex]
D.
[tex]|\Omega|=24\\|A|=5\\\\P(A)=\dfrac{5}{24}[/tex]
E.
[tex]|\Omega|=10\\|A|=10\\\\P(A)=\dfrac{10}{10}=1[/tex]
F.
[tex]|\Omega|=10\\|A|=0\\\\P(A)=\dfrac{0}{10}=0[/tex]
The height of a building model is 2% of its actual height. If the building
model is 3 feet tall, how tall is the actual building?
Answer:
x = 150 feets
Step-by-step explanation:
Given that,
The height of a building model is 2% of its actual height.
The building model is 3 feet tall, h = 3 feet
We need to find the height of the actual building. Let it is x.
According to question,
h = 2% of x
We have, h = 3 feet
So,
[tex]x=\dfrac{h}{2\%}\\\\x=\dfrac{3}{2/100}\\\\x=150\ \text{feet}[/tex]
So, the actual height of the building is 150 feets.
the angle of elevation from the top of the tower from a point 100m away from the ground is fourty five degrees. what is the hieght of the tower in the nearest meter
Answer:
100m
Step-by-step explanation:
x=the height of the tower
100m=the distance from the tower
45 degrees the angle of elevation
Drawing a diagram allows you to see that you can form a 'right-angled triangle'.
Using trig. :
Tan 45=x/100m
multiply both sides by 100m
100m*tan 45=100m
Answer:
[tex]\Huge \boxed{\mathrm{100 \ meters}}[/tex]
Step-by-step explanation:
The base of the right triangle created is 100 meters.
The angle between the base and the hypotenuse of the right triangle is 45 degrees.
We can use trigonometric functions to solve for the height of the tower.
[tex]\displaystyle \mathrm{tan(\theta)=\frac{opposite}{adjacent} }[/tex]
Let the height be x.
[tex]\displaystyle \mathrm{tan(45)}=\frac{x}{100}[/tex]
Multiplying both sides by 100.
[tex]\displaystyle 100 \cdot \mathrm{tan(45)}=x[/tex]
[tex]100=x[/tex]
The height of the tower is 100 meters.
If 4SINB=3SIN(2A+B) :
Prove that:7COT(A+B)=COTA
Answer:
Step-by-step explanation:
Given the expression 4sinB = 3sin(2A+B), we are to show that the expression 7cot(A+B) = cotA
Starting with the expression
4sinB= 3sin(2A+B)
Let us re write angle B = (A + B) - A
and 2A + B = (A + B) + A
Substituting the derived expression back into the original expression ww will have;
4Sin{(A + B) - A } = 3Sin{(A + B)+ A}
From trigonometry identity;
Sin(D+E) = SinDcosE + CosDSinE
Sin(D-E) = SinDcosE - CosDSinE
Applying this in the expression above;
4{Sin(A+B)CosA - Cos(A+B)SinA} = 3{Sin(A+B)CosA + Cos(A+B)sinA}
Open the bracket
4Sin(A+B)CosA - 4Cos(A+B)SinA = 3Sin(A+B)CosA + 3Cos(A+B)sinA
Collecting like terms
4Sin(A+B)CosA - 3Sin(A+B)cosA = 3Cos(A+B)sinA + 4Cos(A+B)sinA
Sin(A+B)CosA = 7Cos(A+B)sinA
Divide both sides by sinA
Sin(A+B)CosA/sinA= 7Cos(A+B)sinA/sinA
Since cosA/sinA = cotA, the expression becomes;
Sin(A+B)cotA = 7Cos(A+B)
Finally, divide both sides of the resulting equation by sin(A+B)
Sin(A+B)cotA/sin(A+B) = 7Cos(A+B)/sin(A+B)
CotA = 7cot(A+B) Proved!
A holiday company charters an aircraft to fly to Malta at
a cost of $22 000. It then sells 150 seats at $185 each and a
futher 35 seats at a 20% discount. Calculate the profit made
per seat if the plane has 200 seats.
Answer:
$54.65 profit per seat
Step-by-step explanation:
150(185) + 35(185)(.8) = 27,750 + 5,180 = 32,930 - 22,000 = 10,930
10,930/200 = $54.65 profit per seat
Answer:
$54.65
Step-by-step explanation:
First, we find the total amount made. This is easy:
(150 x 185) + (35 x .8(185)) =
27750 + 5180 =
32930
We then subtract the $22000, so the company makes a profit of 10930. There are 200 seats, so the profit made per seat is $54.65
If sin Θ = 5 over 6, what are the values of cos Θ and tan Θ?
Answer:
Check explanation
Step-by-step explanation:
Sin∅=5/6
Opp=5. Hyp=6
Adj= (√6²+5²)
= √11
Cos∅=(√11)/6
Tan∅=5/(√11)
Reduce any fractions to lowest terms. Don't round your answer, and don't use mixed fractions. 4x+4\leq9x+84x+4≤9x+8
Answer:
x ≥ -4/5
Step-by-step explanation:
Maybe you want to solve ...
4x+4 ≤ 9x +8
0 ≤ 5x +4 . . . . . subtract 4x+4
0 ≤ x +4/5 . . . . . divide by 5
-4/5 ≤ x . . . . . . . subtract 4/5
Answer:
x ≥−4/5
Step-by-step explanation:
A combination lock uses three numbers between 1 and 46 with repetition, and they must be selected in the correct sequence. Is the name of "combination lock" appropriate? Why or why not? Choose the correct answer below. A. No, because the multiplication counting rule would be used to determine the total number of combinations. B. Yes, because the combinations rule would be used to determine the total number of combinations. C. No, because factorials would be used to determine the total number of combinations. D. No, because the permutations rule would be used to determine the total number of combinations.
The correct answer is D. No because the permutations rule would be used to determine the total number of combinations.
Explanation:
The difference between a combination and a permutation is that in permutations the order is considered. This applies to the numbers in a lock because these need to be in order. Therefore, to analyze the permutations in a lock, the rule for permutations should be used. This includes the general formula P (n,r) =[tex]\frac{n!}{(n-r) !}[/tex]; in this, n is the number of objects and r refers to the objects used in a permutation. Thus, the term "combination" is inappropriate because this is a permutation, and the permutation rule should be used.
Jenny had a wardrobe full of 35 different shirts. In order to make more space in her closet, she got rid of 9 of them. What is a reasonable
estimate for the percentage of shirts Jenny got rid of?
There is no one set answer because there are many ways to estimate here.
35 rounds to 40
9 rounds to 10
She got rid of 10 shirts out of 40, so 10/40 = 1/4 = 0.25 = 25% is the estimated percentage of shirts she got rid of. This is one possible estimate.
Using a calculator, the actual percentage is 9/35 = 0.2571 = 25.71% approximately. So our estimate isn't too bad. Our estimate is an underestimate.
please can someone help me solve this.. please help!!
Step-by-step explanation:
Hello,
Firstly just look to triangle BDE,
Here, you will find that,
140° = y+80° {the exterior and opposite interior angle of a triangle is equal}.
or, y= 140°-80° {shifting 80° to another side and subtracting it.}
Therefore, the value of y is 60°.
now, let's simply work with line EB or EG. we get;
angle GEF + y=180° { being a linear pair}.
or, angle GEF + 60°= 180°
or, angle GEF = 180°-60°
Therefore, the value of angle GEF = 120°.
now, looking in triangle EFG, we get;
angle GEF + 35°+x= 180° { the sum of interior angle of a triangle is 180°}.
or, 120°+35°+ x= 180°
or, x= 180°- 155°
Therefore, the value of x is 25°.
now, lastly finding the value of "z"
We find that x= z {being vertical opposite angle}
or, z =25°
Therefore, the value of z is 25°.
So, the values are,
x=25°
y=60°
and z= 25°
Hope it helps...
5x+4(-x-2) = -5x + 2(x-1)+12 solve for x
Hello!
Answer:
[tex]\huge\boxed{x = 4.5}[/tex]
Starting with:
5x + 4(-x - 2) = -5x + 2(x - 1) + 12
Distribute terms outside of the parenthesis:
5x + 4(-x) + 4(-2) = -5x + 2(x) + 2(-1) + 12
5x - 4x - 8 = -5x + 2x - 2 + 12
Combine like terms:
x - 8 = -3x + 10
Isolate for the "x" variable by adding 3x for both sides:
4x - 8 = 10
Add 8 to both sides:
4x = 18
Divide both sides by 4:
x = 18/4
x = 4.5
Hope this helped! :)
Answer:
[tex] \boxed{x = 4.5}[/tex]
Step-by-step explanation:
[tex] \mathrm{5x + 4( - x - 2) = - 5x + 2(x - 1) + 12}[/tex]
Distribute 4 through the parentheses
Similarly, Distribute 2 through the parentheses
[tex] \mathsf{ 5x - 4x - 8 = - 5x + 2x - 2 + 12}[/tex]
Collect like terms
[tex] \mathsf{ x - 8 = - 3x - 2 + 12}[/tex]
Calculate the sum
[tex] \mathsf{x - 8 = - 3x + 10}[/tex]
Move variable to L.H.S and change its sign
Similarly, Move constant to R.H.S and change its sign
[tex] \mathsf{ x + 3x = 10 + 8}[/tex]
Collect like terms
[tex] \mathsf{4x = 10 + 8}[/tex]
Calculate the sum
[tex] \mathsf{4x = 18}[/tex]
Divide both sides of the equation by 4
[tex] \mathsf{ \frac{4x}{4} = \frac{18}{4}} [/tex]
Calculate
[tex] \mathsf{x = 4.5}[/tex]
Hope I helped!
Best regards!
Kim is buying an equal number of ounces of gummy bears and chocolate drops for her friends. Kim has $10 to spend at the store. If gummy bears cost $0.50 per ounce and chocolate drops cost $0.75 per ounce, how many ounces of each type of candy can she buy?
Answer:
she can buy 13.333 repeating ounces (13 as a full number) of chocolate drops or 20 ounces of gummy bears.
Step-by-step explanation:
take the amount of money you have, $10 and divide that by the price per ounce $10÷.5=20
Answer:
8 ounces
Step-by-step explanation:
Imagine X is the number of ounces she can buy for each type
.5 (x) the gummy and .75 (x) the chocolage = 10
combine like terms.
1.25 (X) = 10
X = 8
.5 (8) + .75(8) = 10
4+ 6 = 10
need help will give 5 stars.
Answer:
t=0.64
Step-by-step explanation:
h = -16t^2 +4t +4
We want h =0 since it is hitting the ground
0 = -16t^2 +4t +4
Using the quadratic formula
a = -16 b = 4 c=4
-b ± sqrt( b^2 -4ac)
----------------------------
2a
-4 ± sqrt( 4^2 -4(-16)4)
----------------------------
2(-16)
-4 ± sqrt( 16+ 256)
----------------------------
-32
-4 ± sqrt( 272)
----------------------------
-32
-4 ± sqrt( 16*17)
----------------------------
-32
-4 ± sqrt( 16) sqrt(17)
----------------------------
-32
-4 ± 4 sqrt(17)
----------------------------
-32
Divide by -4
1 ± sqrt(17)
----------------------------
8
To the nearest hundredth
t=-0.39
t=0.64
Since time cannot be negative
t=0.64
Answer:
0.64
Step-by-step explanation:
0 = -16t^2 + 4t + 4
-4(4t^2 - t -1) = 0
t = [-(-1) +/- sqrt (1 - 4*4*-1)] / 8)
t = 0.64, -0.39
answer is 0.64