Answer:
[tex]Ba\ percentage\ in\ Mass=4.8\%[/tex]
Explanation:
From the question we are told that:
Mass of mixture [tex]m=3.455g[/tex]
Mass of Barium [tex]m_b=0.2815g[/tex]
Equation of Reaction is given as
[tex]Ba2+ + H2SO4 => BaSO4 + 2 H+[/tex]
Generally the equation for Moles of Barium is mathematically given by
Since
[tex]Moles of Ba^{2+} = Moles of BaSO_4[/tex]
Therefore
[tex]Moles of Ba^{2+} = \frac{mass}{molar mass of BaSO4}[/tex]
[tex]Moles of Ba^{2+} = \frac{0.2815}{233.39}= 0.0012061 mol[/tex]
Generally the equation for Mass of Barium is mathematically given by
[tex]Mass\ of\ Ba^{2+} = Moles * Molar mass of Ba^{2+}[/tex]
[tex]Mass\ of\ Ba^{2+} = 0.0012061 * 137.33 = 0.1656 g[/tex]
Therefore
[tex]Ba\ percentage\ in\ Mass = mass of Ba^{2+}/mass of sample * 100%[/tex]
[tex]Ba\ percentage\ in\ Mass= \frac{0.1656}{ 3.455 }* 100%[/tex]
[tex]Ba\ percentage\ in\ Mass=4.8\%[/tex]
Which of the following would have the lowest kinetic energy?
a) Gaseous water
b) Boiling water
c) Liquid water
d) nSolid water
Answer:
d) Solid water
Explanation:
because it's particles are more fixed together ( least apart ), so their mobility and conductivity is very low hence lowest kinetic energy.
Answer:
d. Solid water
Explanation:
example ice
A certain polytomic ion contains 49 protons and 50 electrons. What's the net charge of this ion?
Answer:
the charge is -1
Explanation:
because the charge of proton is +and electron -
charge = +49 +(-50)
= -1
Answer:
Net charge is -1
Explanation:
[tex]{ \sf{net \: charge = p {}^{ + } + {e}^{ - } }} \\ = { \sf{49 + ( - 50)}} \\ = - 1[/tex]
Given the following reaction:
CO (g) + 2 H2(g) <==> CH3OH (g)
In an experiment, 0.42 mol of CO and 0.42 mol of H2 were placed in a 1.00-L reaction vessel. At equilibrium, there were 0.29 mol of CO remaining. Keq at the temperature of the experiment is ________.
A) 2.80
B) 0.357
C) 14.5
D) 17.5
E) none of the above
Answer:
Option D. 17.5
Explanation:
Equiibrium is: CO + 2H₂ ⇄ CH₃OH
1 mol of CO is in equibrium with 2 moles of hydrogen in order to make, methanol.
Initially we have 0.42 moles of CO and 0.42 moles of H₂
If 0.29 moles of CO remained, (0.42 - 0.29) = 0.13 moles have reacted.
So in the equilibrium we may have:
0.29 moles of CO, and (0.42 - 0.13 . 2) = 0.16 moles of H₂
Ratio is 1:2, if 0.13 moles of CO haved reacted, (0.13 . 2) moles have reacted of hydrogen
Finally 0.13 moles of methanol, are found after the equilibrium reach the end.
Let's make expression for KC: [Methanol] / [CO] . [Hydrogen]²
0.13 / (0.29 . 0.16²)
Kc = 17.5
Why must beta particles be used to detect leaks in a pipe?
Why must beta particles be used to detect leaks in a pipe?
A. Beta particles will not be absorbed by the soil like gamma radiation, but won't pass through the pipe before reaching the leak like alpha radiation would.
B. Beta particles will not cause an electrical discharge like alpha particles when they interact with the metal pipe, or contaminate the water like gamma radiation.
C. Beta particles are not used, only alpha particles are used because they are not harmful to humans.
D. Beta particles will not be absorbed by the soil like alpha particles, but won't pass through the pipe before reaching the leak like gamma radiation would.
Should be D, because alpha particles are absorbed by soil and gamma isn't
Beta particles will not be absorbed by the soil like alpha particles, but won't pass through the pipe before reaching the leak.
What is Beta particle?This type of particle is a high-speed electron and is derived from the process of beta decay.
It is used to detect leaks in pipe because it will not be absorbed by the soil like alpha particles, but won't pass through the pipe before reaching the leak like gamma radiation would.
Read more about Beta particle here https://brainly.com/question/14324290
All of the following are characteristics of metals except: Group of answer choices good conductors of heat malleable ductile often lustrous tend to gain electrons in chemical reactions
Answer:
Hence the correct option is the last option that is tends to gain electrons in chemical reactions to become anions.
Explanation:
Metals tend to donate electrons in chemical reactions to become cations.
81.5 g of metal was heated from 11 degrees Celsius to 69 degrees Celsius. If 6739 joules of heat energy were used, what is the specific heat capacity of the metal?
Answer:
the metal become red hot
A compound with a molecular weight of about 64.47 g/mol was found to be 18.63 % of C, 1.56 % of H, 24.82 % of O, and 54.99 % of Cl by mass. Determine the molecular formula and draw the Lewis structure showing an accurate 3-D perspective. *Show your calculations
Answer:
See detailed explanation.
Explanation:
Hey there!
In this case, according to the given information, it turns out possible for us to solve this problem by firstly calculating the moles of each element, assuming those percentages are masses, so that we divide by their molar masses:
[tex]C=\frac{18.63}{12.01}=1.55\\\\H=\frac{1.56}{1.01} =1.55\\\\O=\frac{24.82}{16.00}=1.55\\\\Cl=\frac{54.99}{35.45}=1.55[/tex]
Then, we divide all of them by 1.55 to realize the empirical formula is:
[tex]CHOCl[/tex]
Whose molar mass is 64.47 g/mol, and therefore, since the molar mass of these two is the same, we infer the molecular formula is also CHOCl.
The Lewis structure is shown on the attached document, whereas, the central atom is C and it does complete its octet as well as both O and Cl.
Regards!
What makes it possible
for a vascular plant to
be a long distance from
a water source?
A. long leaves
B. flowers
C. long roots
D. long stems
Answer:
I think long roots
Explanation:
Low-density polyethylene is formed because _______ polymerization is very unpredictable and difficult to control.
dehydration-condensation
anionic-initiated
radical-initiated
esterification
Answer:
radical-initiated
Explanation:
Radical-initiated polymerization is unpredictable and difficult to control. The reaction proceeds indiscriminately and produces shortened chains, loops, and branches that create holes in the polymer. This reduces its mass to volume ratio.
lution: What is the molarity of 245 g of H, SO4 dissolved in 1.00 L of solution?
Answer:
Cm = n/V
n(H2SO4) = 245/98 = 2.5 mol
Cm(H2SO4) = 2.5/1 = 2.5 M
Explanation:
How much heat energy is required to raise the temperature of 50g of bromine from 25°C to 30°C? [Specific heat capacity of bromine = 0.226 J/(g °C]
Answer:
56.5J
Explanation:
To find the heat energy required use the formula for the specific heat capacity which is
c=quantity of heat/mass×change in temperature
in this question c is 0.226j/g,the mass is 50g and the change in temperature is 30-25=5
therefore
0.226=Q/50×5
Q=0.226×250
=56.5J
I hope this helps
Methane (CH4) is the major component of natural gas. 40.0 grams of methane were placed in a commercial calorimeter and subjected to a combustion reaction. The reaction released 2800 kJ of energy.
1. Compare this energy value to the energy values of paraffin and isopropanol. Is methane a good choice as a fuel?
Based on comparison of energy produced per kilogram, a given mass of methane produces more energy than similar masses of either paraffin or isopropanol, therefore;
Methane is a good choice as a fuel
The reason for the above comparison conclusion is as follows:
The given information:
The details of the combustion of the methane gas, CH₄, are as follows;
The mass of the methane gas placed in the calorimeter, m = 40.0 g
The amount of heat released from the combustion of the 40.0 grams of methane = 2,800 kJ
The data from online resources of paraffin and isopropanol includes
1. The energy value of paraffin = 46 MJ/kg
The energy value of isopropanol = 33.6 MJ/kg
The energy produced from 1 kilogram of methane gas is given as follows;
40.0 g of methane gas produces 2,800 kJ of energy, therefore;
1 kg = 1,000 g of methane gas will produce, 2,800kJ/(40.0 g) × 1,000 g = 70,000,000 J
Therefore;
1 kg of methane produces 70,000,000 J = 70 MJ of energy
Therefore, energy produced from methane = 70 MJ/kg
Given that methane produces more than twice the amount of energy that
is produced from similar mass of isopropanol and more than one and half
times the amount of energy that is produced from the same mass of
paraffin, methane is a good choice as a fuel for energy
Learn more about the calorific value of fuels here:
https://brainly.com/question/24095281
Given the reactants of the chemical reaction that will take place in Part D (construction of a lead concentration cell) prior to the assembly of the cell, determine the type of chemical reaction it is. Hint: Determine the products of the reaction.
Answer:
hi
Explanation:
Ammonium phosphate NH43PO4 is an important ingredient in many fertilizers. It can be made by reacting phosphoric acid H3PO4 with ammonia NH3. What mass of ammonium phosphate is produced by the reaction of 5.5g of phosphoric acid
Answer:
8.3 g
Explanation:
Step 1: Write the balanced equation
H₃PO₄ + 3 NH₃ ⇒ (NH₄)₃PO₄
Step 2: Calculate the moles corresponding to 5.5 g of H₃PO₄
The molar mass of H₃PO₄ is 97.99 g/mol.
5.5 g × 1 mol/97.99 g = 0.056 mol
Step 3: Calculate the moles of (NH₄)₃PO₄ produced
The molar ratio of H₃PO₄ to (NH₄)₃PO₄is 1:1. The moles of (NH₄)₃PO₄ produced are 1/1 × 0.056 mol = 0.056 mol.
Step 4: Calculate the mass corresponding to 0.056 moles of (NH₄)₃PO₄
The molar mass of (NH₄)₃PO₄ is 149.09 g/mol.
0.056 mol × 149.09 g/mol = 8.3 g
Uhm cell parts and functions
A cell is the structural and fundamental unit of life. The study of cells from its basic structure to the functions of every cell organelle is called Cell Biology. Robert Hooke was the first Biologist who discovered cells
two types of cell
1) Prokaryotes
2) Eukaryotes
Characteristics of Cells
1) Cells provide structure and support to the body of an organism.
2) The cell interior is organised into different individual organelles surrounded by a separate membrane.
3) The nucleus (major organelle) holds genetic information necessary for reproduction and cell growth
[tex]hope \: its \: helpful \: to \: you \: please \: mark \: me \: a \: brainliest[/tex]
A cell is defined as the fundamental, structural and functional unit of all life.
have a great day
God bless you
How many grams of glucose are needed to prepare 144.3 mL of a 1.4%(m/v) glucose solution?
Answer:
2.0202 grams
Explanation:
1.4% (m/v) glucose solution means: 1.4g glucose/100mL solution.
so ?g glucose = 144.3 mL soln
Now apply the conversion factor, and you have:
?g glucose = 144.3mL soln x (1.4g glucose/100mL soln).
so you have (144.3x1.4/100) g glucose= 2.0202 grams
^^^^Changes in state of matter are ALWAYS changes.
Answer:
physical
Explanation:
The change in the state of matter is always physical change, because it can be done with physical processes.
How is the compound NH3 classified?
A. As a salt
B. As a base
C. As an acid
D. As ionic
Answer:
B
Explanation:
Ammonia is considered a base as it's pH is 11
Answer from Gauthmath
The compound NH3 (Ammonia) can be classified as a weak Base. Below you can learn more about Ammonia.
What is Ammonia (NH3)?Ammonia is a chemical compound which is derived from the combination of Nitrogen and Hydrogen. It is denoted by the chemical formula NH3.
Ammonia is a base and when it reacts with acids to gives out salts. Physically, It is a colorless gas with a distinct characteristic of a pungent smell.
Learn more about Ammonia at https://brainly.com/question/14445062
#SPJ9
What is a reaction rate?
Answer:
A reaction is the time that is required for a chemical reaction to go essential to completion
Consider a galvanic (voltaic) cell that has the generic metals X and Y as electrodes. If X is more reactive than Y (that is, X more readily reacts to form a cation than Y does), classify the following descriptions by whether they apply to the X or Y electrode.
i. anode
ii. cathode
iii. electrons in the wire flow toward
iv. electrons in the wire flow away
v. cations from salt bridge flow toward
vi. anions from salt bridge flow toward
vii. gains mass
viii. loses mass
Answer:
X
anode
electrons in the wire flow away
anions from salt bridge flow toward
loses mass
Y
cathode
electrons in the wire flow toward
cations from salt bridge flow toward
gains mass
Explanation:
In a galvanic cell, oxidation occurs at the anode while reduction occurs at the cathode. The metal that is more reactive functions as the anode while the less reactive metal functions as the cathode.
Electrons leave the anode and travel via a wire to the cathode. At the anode cations give up electrons and enter into the solution.
At the cathode, cations pick up electrons and are deposited on the cathode leading to a gain in mass at the cathode.
Positive ions from the salt bridge flow towards the cathode while negative ions from the salt bridge flow towards the anode.
Two flasks are connected by a closed valve. One contains gas particles and the other contains a vacuum. If the valve is opened such that the particles move until they fill both flasks, the process by which the particles can reconvene entirely in one of the flasks is:
Answer: The process by which the particles can reconvene entirely in one of the flasks is: NONSPONTANEOUS.
Explanation:
The spontaneity of a process can affect the distribution of energy and matter within the system. Different chemical or physical processes have the natural tendency to occur in one direction under a given set of conditions. For example:
--> when water is pour down a hill it naturally flows down but it requires outside energy maybe from a water pump to flow up the hill and ,
--> during an iron rust, iron that is exposed to atmosphere will corrode, but rust is not converted to iron without intentional chemical treatment.
Therefore, a spontaneous process is one that occurs naturally under certain conditions. While a NONSPONTANEOUS process, on the other hand, will not take place unless it is initiated by the continual input of energy from an outside source. A process that is spontaneous in one direction under a particular set of conditions is nonspontaneous in the REVERSE direction.
From the two flasks that where connected through a valve, once the valve was opened, the gas spontaneously becomes evenly distributed between the flasks. To reverse this, it would require an external energy making the reconvening of the particles back to the first flask a NONSPONTANEOUS PROCESS .
A sample of nitrogen gas occupies 117 mL at 100°C. At what
temperature would it occupy 234 mL if the pressure does not
change? (express answer in K and °C)
47
Page
8 I 8
- Q +
Answer:
The new temperature of the gas is 746 K.
Explanation:
Given that,
The volume of the gas, V₁ = 117 mL
Temperature, T₁ = 100°C = 373
Final volume of the gas, V₂ = 234 mL
We need to find the final temperature. The relation between temperature and volume is given by :
[tex]\dfrac{V_1}{V_2}=\dfrac{T_1}{T_2}\\\\T_2=\dfrac{T_1V_2}{V_1}\\\\T_2=\dfrac{373\times 234}{117}\\\\T_2=746\ K[/tex]
So, the new temperature of the gas is 746 K.
Too many objects inside a laboratory fume hood can disrupt the airflow and possibly compromise you safety. Which of the following are considered best practices in the use of a laboratory fume hood?
a. Open the sash as much as possible
b. Work at least 25 cm inside the hood
c. Use fast, quick movements to limit your exposure
d. Place objects to one side—work on other side
e. Use a raised along the back of the hood
Best practices for fume hoods: work 25 cm inside, organize items to one side, use raised ledge; avoid open sash and quick movements.
Laboratory fume hoods must be used safely. Workers should operate at least 25 cm within the hood to preserve ventilation and avoid dangerous chemicals. Place things on one side of the hood to preserve ventilation and prevent clogging.
A raised ledge on the rear of the hood prevents things from falling in and impeding airflow. Avoid fully opening the sash to maintain ventilation and containment. Fast, rapid motions can interrupt airflow, so prevent them. These practises guarantee the fume hood contains harmful compounds, making the lab safer. Therefore, option (B), (D) and (E) are correct.
Learn more about fume hood, here:
https://brainly.com/question/29069541
#SPJ12
A 2.00-mol sample of hydrogen gas is heated at constant pressure from 294 K to 414 K. (a) Calculate the energy transferred to the gas by heat. kJ (b) Calculate the increase in its internal energy. kJ (c) Calculate the work done on the gas. kJ
Answer:
a) The energy transferred is 6.91 kJ
b) The internal energy is 4.90 kJ
c) The work done on the gas is - 2.01 kJ
Explanation:
Step 1: Data given
Number of moles of hydrogen gas = 2.00 moles
Pressure = constant
Temperature is heated from 294 K to 414 K
Molar heat capacity of hydrogen gas = 28.8 J/mol*K
Step 2: Calculate the energy transferred to the gas by heat.
Q = n* Cp * ΔT
⇒with Q =the energy transferred
⇒with n = the number of moles = 2.00 moles
⇒with Cp = the Molar heat capacity of hydrogen gas = 28.8 J/mol*K
⇒ with ΔT = Temperature 2 - Temperature 1 = 414 - 294 = 120K
Q = 2.00 * 28.8 * 120
Q = 6912 J = 6.91 kJ
Step 3: Calculate the increase in its internal energy.
ΔEint = n*Cv*ΔT
⇒with ΔEint = the increase in its internal energy.
⇒with n = the number of moles = 2.00 moles
⇒with Cv = The constant volume = 20.4 J/mol*K
⇒with ΔT = Temperature 2 - Temperature 1 = 414 - 294 = 120K
ΔEint = 2.00 * 20.4 * 120
ΔEint =4896 J = 4.90 kJ
Step 4: Calculate the work done on the gas.
Work done on the gas = -Q + ΔEint
W = -6.91 kJ + 4.90 kJ
W = -2.01 kJ
Để xác định hàm lượng Cu trong hợp kim Cu-Zn người ta làm như sau: Hòa
tan hoàn toàn 2,068g mẫu hợp kim Cu-Zn trong lượng dư axit HNO3, thu được dung
dịch X. Đun đuổi axit dư, điều chỉnh tới pH 3 thu được 100mL dung dịch Y. Lấy
10mL dung dịch Y, thêm KI dư, rồi chuẩn độ dung dịch tạo thành bằng dung dịch
Na2S2O3 0,1M thì thấy hết 15,0 mL. Viết các phương trình phản ứng xảy ra. Tính
hàm lượng Cu trong mẫu hợp kim trên.
what is meant by density
Answer:
The degree of compactness of a substance
Many important analgesic compounds are derived from simple aromatic starting materials.
a. True
b. False
If the concentration of [CO32−] were doubled (say, by adding a highly soluble carbonate salt such as Cs2CO3), what would be the new concentration of [Li+] in the saturated solution?
Answer:
ufvkoo5dvjutfbnjiiihhb
When 3-methyl-1-pentene is treated with in dichloromethane, the major product is 1-bromo-3-methyl-2-pentene.
a. True
b. False
Answer:
True
Explanation:
When Methyl Pentene is introduced in a chemical reaction with dichloromethane then the major product will be bromomethylpentene. There can be small amount of bromo methyl pentene than the amount of methyl pentene introduced for reaction.
An ion of a single pure element always has an oxidation number of ________.
A. None of these
B. magnitude equal to its atomic number
C. 1
D. 0
Answer:
0
Explanation:
pure elements will always possess an oxidation number of 0, regardless of their charge.
Answer:
D.) 0
Explanation:
I got it correct on founders edtell