-3(-5x-2u+1) use the distributive property to remove the parentheses

Answers

Answer 1

Answer:

15x+6u−3

Step-by-step explanation:

This means -3 times -5x, -3 times -2u, and -3 times 1.

Do this and you have, 15x+6u-3.


Related Questions

Simplify to create an equivalent expression.
-k-(-8k+7)
a=7k−7
b=-7k-7
c=7k+7
d=-7k+7
choose one

Answers

Answer:

a. 7k - 7

Step-by-step explanation:

Step 1: Write out expression

-k - (-8k + 7)

Step 2: Distribute negative

-k + 8k - 7

Step 3: Combine like terms

7k - 7

And we have our answer!

Question 2 Rewrite in simplest radical form 1 x −3 6 . Show each step of your process.

Answers

Answer:

√(x)

Step-by-step explanation:

(1)/(x^-(1/2)) that's 3 goes into -3 leaving 1 and goes into 6 leaving 2

1/2 is same as 2^-1

so therefore we can simplify the above as

x^-(-1/2)

x^(1/2)

and 4^(1/2)

is same as √(4)

so we conclude as

√(x)

Emily made a pot of cream of pumpkin soup for thanksgiving dinner. She put 5
cups of cream in the soup. She poured the soup into 24 small soup bowls. How
much cream (measured in oz.) is used for each small bowl of soup?

Answers

Answer:

1 2/3 ounces in each bowl

Step-by-step explanation:

We need to convert 5 cups to ounces

1 cup = 8 ounces

5 cups = 5*8 = 40 ounces

We divide the 40 ounces into 24 bowls

40 ounces / 24 bowl

5/3 ounces per bowl

1 2/3 ounces in each bowl

Answer:

each bowl can contain 5/3 oz. of soup.

Step-by-step explanation:

1 cup = 8 oz.

                   8 oz.

5 cups x --------------  =  40 oz.

                    1 cup

to get the measurement of each bowl,

40 oz. divided into 24 bowls.

therefore, each bowl can contain 5/3 oz. of soup.

I need help on this question, can someone please answer it correctly?

Answers

Answer:the one area < with line underneath then -4

St-by-step explanation: I’m pretty sure this is correct

Answer:

[tex] \boxed{x \leqslant - 4}[/tex]

Step-by-step explanation:

[tex] \mathrm{16x - 7 \leqslant - 71}[/tex]

Move constant to Right hand side and change its sign

[tex] \mathrm{16x \leqslant - 71 + 7}[/tex]

Calculate

[tex] \mathrm{16x \leqslant - 64}[/tex]

Divide both sides of the equation by 16

[tex] \mathrm{ \frac{16x}{16} \leqslant \frac{ - 64}{16} }[/tex]

Calculate

[tex] \mathrm{x \leqslant - 4}[/tex]

Hope I helped!

Best regards!

What word phrase can you use to represent the algebraic expression 7x?

A. 7 more than a number x
B. the product of 7 and a number x
C. the quotient of 7 and a number x
D. 7 less than a number x

Answers

Answer:

B. the product of 7 and a number x

Step-by-step explanation:

7x is 7 multiplied by x.

Answer:

b is the product

Step-by-step explanation:

The double number lines show the ratio of cups to gallons. How many cups are in 333 gallons? _____ cups

Answers

Answer:

5328 cups.

Step-by-step explanation:

Given that 333 gallons

We know that

1 gallons = 16 cups

1 cups = 0.0625 gallons

Therefore,from the above conversion we can say that

Now by putting the values in the above conversion

333 gallons = 16 x 333 cups

333 gallons = 5328 cups

So , we can say that 333 gallons is equal to 5328 cups.

Thus the answer will be 5328 cups.

Answer:

48 cups(BTW he meant 33 galons, IVE had this before). lol you need to put the double number line image. first u have to divide 64/4 to get 16, Then it says "How many cups are in 3 gallons". There fore, U multiply 16 to 3 to get ur answer "48".

Determine the number of degrees of freedom for the two-sample t test or CI in each of the following situations. (Round your answers down to the nearest whole number.)a. m = 12, n = 15, s1 = 4.0, s2 = 6.0b. m = 12, n = 21, s1 = 4.0, s2 = 6.0c. m = 12, n = 21, s1 = 3.0, s2 = 6.0d. m = 10, n = 24, s1 = 4.0, s2 = 6.0

Answers

Answer:

Part a ) The degrees of freedom for the given two sample non-pooled t test is 24

Part b ) The degrees of freedom for the given two sample non-pooled t test is 30

Part c ) The degrees of freedom for the given two sample non-pooled t test is 30

Part d ) The degrees of freedom for the given two sample non-pooled t test is 25

Step-by-step explanation:

Degrees of freedom for a non-pooled two sample t-test is given by;

Δf = {[ s₁²/m + s₂²/n ]²} / {[( s₁²/m)²/m-1] + [(s₂²/n)²/n-1]}

Now given the information;

a) :- m = 12, n = 15, s₁ = 4.0, s₂ = 6.0

we substitute

Δf =  {[ 4²/12 + 6²/15 ]²} / {[( 4²/12)²/12-1] + [(6²/15)²/15-1]}

Δf  = 30184 / 1241

Δf  = 24.3223 ≈ 24 (down to the nearest whole number)

b) :- m = 12, n = 21, s₁ = 4.0, s₂ = 6.0

we substitute using same formula

Δf = {[ s₁²/m + s₂²/n ]²} / {[( s₁²/m)²/m-1] + [(s₂²/n)²/n-1]}

Δf = {[ 4²/12 + 6²/21 ]²} / {[( 4²/12)²/12-1] + [(6²/21)²/21-1]}

Δf = 56320 / 1871

Δf = 30.1015 ≈ 30 (down to the nearest whole number)

c) :- m = 12, n = 21, s₁ = 3.0, s₂ = 6.0

we substitute using same formula

Δf = {[ s₁²/m + s₂²/n ]²} / {[( s₁²/m)²/m-1] + [(s₂²/n)²/n-1]}

Δf = {[ 3²/12 + 6²/21 ]²} / {[( 3²/12)²/12-1] + [(6²/21)²/21-1]}

Δf = 29095 / 949

Δf = 30.6585 ≈ 30 (down to the nearest whole number)

d) :- m = 10, n = 24, s₁ = 4.0, s₂ = 6.0

we substitute using same formula

Δf = {[ s₁²/m + s₂²/n ]²} / {[( s₁²/m)²/m-1] + [(s₂²/n)²/n-1]}

Δf = {[ 4²/10 + 6²/24 ]²} / {[( 4²/10)²/10-1] + [(6²/24)²/24-1]}

Δf = 1044 / 41  

Δf = 25.4634 ≈ 25 (down to the nearest whole number).

Each student in a school was asked, "What is your favorite color?" The circle graph below shows how they answered

Which color was chosen by approximately one fourth of the students?

Approximately what percentage of the students chose purple or green?

Answers

Answer:

a). BLUE color

b). 20%

Step-by-step explanation:

a). "Which color was chosen by approximately one fourth of the students?"

  Since one fourth of the students will be represented by one fourth area of the circle given.

That means color of choice represented by the quarter of the circle will be the color liked by one fourth students.

In the figure attached, BLUE color is the choice of one fourth students in the class.

b). Area represented by purple, green and other colors is a quarter of the circle.

If we divide this quarter into five equal sections, then the total of purple and green will be  [tex]4\times \frac{1}{5}[/tex] of the the quarter of the circle.

Measure of the angle defined by purple or green sections = [tex]\frac{4}{5}\times 90[/tex]

                                                                                                     = 72°

Percentage of the students who preferred purple or green = [tex]\frac{72}{360}\times 100[/tex]

                                                                                                     = 20%

Answer:

blue

20%

Step-by-step explanation:

The balances in two separate bank accounts that grow each month at different rales are represented by the functions f(x) and gix) In what month do the funds in the f(x) bank account exceed those in the glx)
bank account?
Month (x) f(x) = 2* g(x) = 4x + 12
1
2
16
2.
4
20
O Month 3
O Month 4
O Month 5
O Month 6​

Answers

Answer:

The balance in two separate bank accounts grows each month at different rates. the growth rates for both accounts are represented by the functions f(x) = 2x and g(x) = 4x 12. in what month is the f(x) balance greater than the g(x) balance?

Answer:

6 months

function is a relationship between inputs where each input is related to exactly one output.

x = 5,

f(5) = [tex]2^5\\[/tex] = 32

g(5) = 4 x 5 + 12 = 20 + 12 = 32

x = 6,

f(6) = [tex]2^6[/tex] = 64

g(6) = 4 x 6 + 12 = 24 + 12 = 36

At month 6 the funds in the f(x) bank account exceed those in the g(x) bank account.

What is a function?

function is a relationship between inputs where each input is related to exactly one output.

Example:

f(x) = 2x + 1

f(1) = 2 + 1 = 3

f(2) = 2 x 2 + 1 = 4 + 1 = 5

The outputs of the functions are 3 and 5

The inputs of the function are 1 and 2.

We have,

f(x) = [tex]2^{x}[/tex]

g(x) = 4x + 12

x = number of months

Now,

x = 3,

f(3) = 2³ = 8

g(3) = 4 x 3 + 12 = 12 + 12 = 24

x = 4,

f(4) = [tex]2^4[/tex] = 16

g(4) = 4 x 4 + 12 = 16 + 12 = 28

x = 5,

f(5) = [tex]2^5\\[/tex] = 32

g(5) = 4 x 5 + 12 = 20 + 12 = 32

x = 6,

f(6) = [tex]2^6[/tex] = 64

g(6) = 4 x 6 + 12 = 24 + 12 = 36

We see that,

At x = 6,

f(5) = 64

g(5) = 36

Thus,

At month 6 the funds in the f(x) bank account exceed those in the g(x) bank account.

Learn more about functions here:

https://brainly.com/question/28533782

#SPJ2

Write an expression to represent the given statement. Use n for the variable. Three times the absolute value of the sum of a number and 6

Answers

Answer:

3 · |x+6|

Step-by-step explanation:

Write out what you see. "Three times" is 3 · something; "the absolute value of the sum of a number and 6" is |number + 6|. We'll use x for our number. Put it all together and you get 3 · |x+6|

The expression of the statement, Three times the absolute value of the sum of a number and 6 is  [tex]\[3\left| n+6 \right|\][/tex] .

Representation of statement:Let n be the number.The sum of the numbers n and 6 is n+6.The absolute value of the sum of the numbers n and 6 is  [tex]\[\left| n+6 \right|\][/tex].Hence, three times the absolute value of the sum of a number and 6 is [tex]\[3\left| n+6 \right|\][/tex].

 

Learn more about the representation of an expression:

https://brainly.com/question/10905086?referrer=searchResults

#SPJ2

Suppose the radius of a circle is 5 units. What is its circumference?​

Answers

Answer:

C≈31.42

Step-by-step explanation:

C=2πr

C=2xπx5

C≈31.42

pls mark as brainliest

the fourth term of an AP is 5 while the sum of the first 6 terms is 10. Find the sum of the first 19 terms​

Answers

Answer: S₁₉ = 855

Step-by-step explanation:

T₄ = a + ( n - 1 )d  = 5 , from the statement above , but n = 4

       a + 3d  = 5 -------------------------1

S₆ = ⁿ/₂[(2a + ( n - 1 )d]  =  10, where n = 6

    = ⁶/₂( 2a + 5d )         = 10

    = 3( 2a + 5d ) = 10

    = 6a + 15d      = 10 -----------------2

Now solve the two equation together simultaneously to get the values of a and d

   a + 3d     = 5

   6a + 15d = 10

from 1,

a = 5 - 3d -------------------------------3

Now put (3) in equation 2 and open the brackets

6( 5 - 3d )  + 15d = 10

30 - 18d + 15d      = 10

30 - 3d                 = 10

            3d            = 30 - 10

             3d           = 20

                         d = ²⁰/₃.

Now substitute for d to get a in equation 3

           a = 5 - 3( ²⁰/₃)

           a = 5 - 3 ₓ ²⁰/₃

              = 5 - 20

          a  = -15.

Now to find the sum of the first 19 terms,

we use the formula

S₁₉ = ⁿ/₂( 2a + ( n - 1 )d )

     = ¹⁹/₂( 2 x -15 + 18 x ²⁰/₃ )

     = ¹⁹/₂( -30 + 6 x 20 )

     = ¹⁹/₂( -30 + 120 )

     = ¹⁹/₂( 90 )

     = ¹⁹/₂ x 90

     = 19 x 45

     = 855

Therefore,

S₁₉ = 855

 

The areas of two similar octagons are 4 m² and 9 m². What is the scale factor of their side lengths? PLZ PLZ HELP PLZ

Answers

Answer:

[tex] \frac{2}{3} [/tex]

Step-by-step explanation:

Area of Octagon A = 4 m²

Side length of Octagon A = a

Area of Octagon B = 9 m²

Side length of Octagon B = b

The scale factor of their side lengths = [tex] \frac{a}{b} [/tex]

According to the area of similar polygons theorem, [tex] \frac{4}{9} = (\frac{a}{b})^2 [/tex]

Thus,

[tex] \sqrt{\frac{4}{9}} = \frac{a}{b} [/tex]

[tex] \frac{\sqrt{4}}{\sqrt{9}} = \frac{a}{b} [/tex]

[tex] \frac{2}{3} = \frac{a}{b} [/tex]

Scale factor of their sides = [tex] \frac{2}{3} [/tex]

Answer:

3:5

Step-by-step explanation:

square root of 9 is 3.

square root if 25 is 5.

therefore, 3:5.

5 STARS IF CORRECT! In general, Can you translate a phrase or sentence into symbols? Explain the answer.

Answers

Answer:

Step-by-step explanation:

I answered this already a few minutes ago.

Answer:

yes you can

Step-by-step explanation:

you can write algebraic expressions and use variables for the unknown

please help with this

Answers

Answer:

[tex]\sin \left(\theta \right)-\frac{1}{2}\cos \left(2\theta \rightt)+C[/tex]

Step-by-step explanation:

We are given the graph of r = cos( θ ) + sin( 2θ ) so that we are being asked to determine the integral. Remember that [tex]\:r=cos\left(\theta \right)+sin\left(2\theta \right)[/tex] can also be rewritten as [tex]\int \cos \left(\theta \right)+\sin \left(2\theta \right)d\theta \right[/tex].

Let's apply the functional rule [tex]\int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx[/tex],

[tex]\int \cos \left(\theta \right)+\sin \left(2\theta \right)d\theta \right[/tex] = [tex]\int \cos \left(\theta \right)d\theta \right+\int \sin \left(2\theta \right)d\theta \right[/tex]

At the same time [tex]\int \cos \left(\theta \right)d\theta \right=\sin \left(\theta \right)[/tex] = [tex]sin( \theta \right ))[/tex], and [tex]\int \sin \left(2\theta \right)d\theta \right[/tex] = [tex]-\frac{1}{2}\cos \left(2\theta \right)[/tex]. Let's substitute,

[tex]\int \cos \left(\theta \right)d\theta \right+\int \sin \left(2\theta \right)d\theta \right[/tex] = [tex]\sin \left(\theta \right)-\frac{1}{2}\cos \left(2\theta \right)[/tex]

And adding a constant C, we receive our final solution.

[tex]\sin \left(\theta \right)-\frac{1}{2}\cos \left(2\theta \rightt)+C[/tex] - this is our integral

When proving a statement using mathematical induction, part of the process is assuming that the statement is true for the nth case. (True or False).

Answers

Answer:

True

Step-by-step explanation:

We assume that is true for the nth case and prove it for the n+1 case

and show that it is true for the case when n=1

Express the quotient of z1 and z2 in standard form given that [tex]z_{1} = -3[cos(\frac{-\pi }{4} )+isin(\frac{-\pi }{4} )][/tex] and [tex]z_{2} = 2\sqrt{2} [cos(\frac{-\pi }{2} )+isin(\frac{-\pi }{2} )][/tex]

Answers

Answer:

Solution : [tex]-\frac{3}{4}-\frac{3}{4}i[/tex]

Step-by-step explanation:

[tex]-3\left[\cos \left(\frac{-\pi }{4}\right)+i\sin \left(\frac{-\pi \:}{4}\right)\right]\:\div \:2\sqrt{2}\left[\cos \left(\frac{-\pi \:\:}{2}\right)+i\sin \left(\frac{-\pi \:\:\:}{2}\right)\right][/tex]

Let's apply trivial identities here. We know that cos(-π / 4) = √2 / 2, sin(-π / 4) = - √2 / 2, cos(-π / 2) = 0, sin(-π / 2) = - 1. Let's substitute those values,

[tex]\frac{-3\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i\right)}{2\sqrt{2}\left(0-1\right)i}[/tex]

=[tex]-3\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i\right)[/tex] ÷ [tex]2\sqrt{2}\left(0-1\right)i[/tex]

= [tex]3\left(-\frac{\sqrt{2}i}{2}+\frac{\sqrt{2}}{2}\right)[/tex] ÷ [tex]-2\sqrt{2}i[/tex]

= [tex]\frac{3\left(1-i\right)}{\sqrt{2}}[/tex]÷ [tex]2\sqrt{2}i[/tex] = [tex]-3-3i[/tex] ÷ [tex]4[/tex] = [tex]-\frac{3}{4}-\frac{3}{4}i[/tex]

As you can see your solution is the last option.

what is the distance between the first and third quartiles of a data set called?

Answers

Answer:

Interquartile range is the distance between the first and third of a data.

Step-by-step explanation:

Hope it will help you :)

The size of a television is the length of the diagonal of its screen in inches. The aspect ratio of the screens of older televisions is 4:3, while the aspect ratio of newer wide-screen televisions is 16:9. Find the width and height of an older 35-inch television whose screen has an aspect ratio of 4:3.

Answers

Answer:

The Width = 28 inches

The Height = 21 inches

Step-by-step explanation:

We are told in the question that:

The width and height of an older 35-inch television whose screen has an aspect ratio of 4:3

Using Pythagoras Theorem

Width² + Height² = Diagonal²

Since we known that the size of a television is the length of the diagonal of its screen in inches.

Hence, for this new TV

Width² + Height² = 35²

We are given ratio: 4:3 as aspect ratio

Width = 4x

Height = 3x

(4x)² +(3x)² = 35²

= 16x² + 9x² = 35²

25x² = 1225

x² = 1225/25

x² = 49

x = √49

x = 7

Hence, for the 35 inch tv set

The Width = 4x

= 4 × 7

= 28 inches.

The Height = 3x

= 3 × 7

= 21 inches

You drive 15 miles in 0.1hours . How fast did you travel if 8=d/t

Answers

Answer:

150

Step-by-step explanation:

[tex]distance = 15 miles\\time = 0.1 hours\\\\Speed = \frac{Distance}{time}\\ Speed = \frac{15}{0.1}\\ Speed =150[/tex]

Answer:

[tex]150mph[/tex]

Step-by-step explanation:

Given:

s=15miles

t=0.1hours

Required:

v=?

Formula:

[tex]v = \frac{s}{t} [/tex]

Solution:

[tex]v = \frac{s}{t} = \frac{15m}{0.1h} = \frac{150m}{1h} = 150mph[/tex]

Hope this helps ;) ❤❤❤

For a certain casino slot machine, the odds in favor of a win are given as 17 to 83. Express the indicated degree of likelihood as a probability value between 0 and 1 inclusive.

Answers

Step-by-step explanation:

83P (E)=17-17P (E),

P (E)=17/100=0.17

what is the domain of f(x)=(1/4)^x

Answers

Answer:

B All real numbers

hope you wil understand

Answer:

[tex]\boxed{\sf B. \ All \ real \ numbers}[/tex]

Step-by-step explanation:

The domain is all possible values for x.

[tex]f(x)=(\frac{1}{4} )^x[/tex]

There are no restrictions on the value of x.

The domain is all real numbers.

What is the value of 20 + 3 (7 + 4) + 5 + 2 (7 + 9)?

Answers

Answer:

90

Step-by-step explanation:

Answer:

90

Step-by-step explanation:

Here is the equation

[tex]20+3\times(7+4)+5+2\times(7+9)[/tex]

In the order of operations parentheses go first so we get

[tex]20+3\times11+5+2\times16[/tex]

Next we do the multiplication

[tex]20+33+5+32\\[/tex]

And finally we add them all up

[tex]20+33+5+32=90\\[/tex]

Thus, 90 is the answer of [tex]20+3\times(7+4)+5+2\times(7+9)[/tex] or [tex]20+3(7+4)+5+2(7+9)[/tex]

20 points!
Please help.

Answers

Man this is a hard one!

Use spherical coordinates. Evaluate e x2 + y2 + z2 dV, E where E is enclosed by the sphere x2 + y2 + z2 = 25 in the first octant.

Answers

Answer:

[tex]\displaystyle \iiint_E {e^{\sqrt{x^2 + y^2 + z^2}}} \, dV = \frac{\pi (17e^5 - 2)}{2}[/tex]

General Formulas and Concepts:
Calculus

Integration

Integrals

Integration Rule [Reverse Power Rule]:
[tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Rule [Fundamental Theorem of Calculus 1]:
[tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]

Integration Property [Multiplied Constant]:
[tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

Integration Property [Addition/Subtraction]:
[tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]

Integration Method [Integration by Parts]:
[tex]\displaystyle \int {u} \, dv = uv - \int {v} \, du[/tex]

[IBP] LIPET: Logs, Inverses, Polynomials, Exponentials, Trig

Multivariable Calculus

Triple Integrals

Cylindrical Coordinate Conversions:

[tex]\displaystyle x = r \cos \theta[/tex][tex]\displaystyle y = r \sin \theta[/tex][tex]\displaystyle z = z[/tex][tex]\displaystyle r^2 = x^2 + y^2[/tex][tex]\displaystyle \tan \theta = \frac{y}{x}[/tex]

Spherical Coordinate Conversions:

[tex]\displaystyle r = \rho \sin \phi[/tex][tex]\displaystyle x = \rho \sin \phi \cos \theta[/tex][tex]\displaystyle z = \rho \cos \phi[/tex][tex]\displaystyle y = \rho \sin \phi \sin \theta[/tex][tex]\displaystyle \rho = \sqrt{x^2 + y^2 + z^2}[/tex]

Integral Conversion [Spherical Coordinates]:
[tex]\displaystyle \iiint_T {f( \rho, \phi, \theta )} \, dV = \iiint_T {\rho^2 \sin \phi} \, d\rho \, d\phi \, d\theta[/tex]

Step-by-step explanation:

*Note:

Recall that φ is bounded by 0 ≤ φ ≤ 0.5π from the z-axis to the x-axis.

I will not show/explain any intermediate calculus steps as there isn't enough space.

Step 1: Define

Identify given.

[tex]\displaystyle \iiint_E {e^{\sqrt{x^2 + y^2 + z^2}}} \, dV[/tex]

[tex]\displaystyle \text{Region E:} \ x^2 + y^2 + z^2 = 25 \ \text{bounded by first octant}[/tex]

Step 2: Integrate Pt. 1

Find ρ bounds.

[Sphere] Substitute in Spherical Coordinate Conversions:
[tex]\displaystyle \rho^2 = 25[/tex]Solve:
[tex]\displaystyle \rho = 5[/tex]Define limits:
[tex]\displaystyle 0 \leq \rho \leq 5[/tex]

Find θ bounds.

[Sphere] Substitute in z = 0:
[tex]\displaystyle x^2 + y^2 = 25[/tex][Circle] Graph [See 2nd Attachment][Graph] Identify limits [Unit Circle]:
[tex]\displaystyle 0 \leq \theta \leq \frac{\pi}{2}[/tex]

Find φ bounds.

[Circle] Substitute in Cylindrical Coordinate Conversions:
[tex]\displaystyle r^2 = 25[/tex]Solve:
[tex]\displaystyle r = 5[/tex]Substitute in Spherical Coordinate Conversions:
[tex]\displaystyle \rho \sin \phi = 5[/tex]Solve:
[tex]\displaystyle \phi = \frac{\pi}{2}[/tex]Define limits:
[tex]\displaystyle 0 \leq \phi \leq \frac{\pi}{2}[/tex]

Step 3: Integrate Pt. 2

[Integrals] Convert [Integral Conversion - Spherical Coordinates]:
[tex]\displaystyle \iiint_E {e^{\sqrt{x^2 + y^2 + z^2}}} \, dV = \iiint_E {e^{\sqrt{x^2 + y^2 + z^2}} \rho^2 \sin \phi} \, d\rho \, d\phi \, d\theta[/tex][dρ Integrand] Rewrite [Spherical Coordinate Conversions]:
[tex]\displaystyle \iiint_E {e^{\sqrt{x^2 + y^2 + z^2}}} \, dV = \iiint_E {e^{\rho} \rho^2 \sin \phi} \, d\rho \, d\phi \, d\theta[/tex][Integrals] Substitute in region E:
[tex]\displaystyle \iiint_E {e^{\sqrt{x^2 + y^2 + z^2}}} \, dV = \int\limits^{\frac{\pi}{2}}_0 \int\limits^{\frac{\pi}{2}}_0 \int\limits^5_0 {e^{\rho} \rho^2 \sin \phi} \, d\rho \, d\phi \, d\theta[/tex]

We evaluate this spherical integral by using the integration rules, properties, and methods listed above:

[tex]\displaystyle \begin{aligned} \iiint_E {e^{\sqrt{x^2 + y^2 + z^2}}} \, dV & = \int\limits^{\frac{\pi}{2}}_0 \int\limits^{\frac{\pi}{2}}_0 \int\limits^5_0 {e^{\rho} \rho^2 \sin \phi} \, d\rho \, d\phi \, d\theta \\ & = \int\limits^{\frac{\pi}{2}}_0 \int\limits^{\frac{\pi}{2}}_0 {\bigg[ (\rho^2 - 2 \rho + 2) e^{\rho} \sin \phi \bigg] \bigg| \limits^{\rho = 5}_{\rho = 0}} \, d\phi \, d\theta\end{aligned}[/tex]

[tex]\displaystyle \begin{aligned}\iiint_E {e^{\sqrt{x^2 + y^2 + z^2}}} \, dV & = \int\limits^{\frac{\pi}{2}}_0 \int\limits^{\frac{\pi}{2}}_0 {(17e^5 - 2) \sin \phi} \, d\phi \, d\theta \\& = \int\limits^{\frac{\pi}{2}}_0 {\bigg[ -(17e^5 - 2) \cos \phi \bigg] \bigg| \limits^{\phi = \frac{\pi}{2}}_{\phi = 0}} \, d\theta \\& = \int\limits^{\frac{\pi}{2}}_0 {17e^5 - 2} \, d\theta \\& = (17e^5 - 2) \theta \bigg| \limits^{\theta = \frac{\pi}{2}}_{\theta = 0} \\& = \frac{\pi (17e^5 - 2)}{2}\end{aligned}[/tex]

∴ the given integral equals [tex]\displaystyle \bold{\frac{\pi (17e^5 - 2)}{2}}[/tex].

---

Learn more about spherical coordinates: https://brainly.com/question/16415822

Learn more about multivariable calculus: https://brainly.com/question/4746216

---

Topic: Multivariable Calculus

Unit: Triple Integrals Applications

Of the three properties, reflexive, symmetric, and transitive that define the relation "is equal to," which one could also apply to "is less than" and "is greater than?" transitive reflexive symmetric

Answers

Answer: Transitive property.

Step-by-step explanation:

First, for the equality we have:

Reflexive:

  For all real numbers x, x = x.

Symmetric:  

 For all real numbers x, y

 if x= y, then y = x.

Transitive:

 For reals x, y and z.

 if x = y, and y = z, then x = z.

Now, let's talk about inequalities.

first, the reflexive property will say that:

x > x.

This has no sense, so this property does not work for inequalities.

Now, the reflexive.

If x > y, then y > x.

Again, this has no sense, if x is larger than y, then we can never have that y is larger than x. This property does not work for inequalities.

Not, the transitive property.

if x > y, and y > z, then x > z.

This is true.

x is bigger than y, and y is bigger than z, then x should also be bigger than z.

x > y > z.

And this also works for the inverse case:

x < y and y < z, then x < z.

So the correct option is transitive property.

A hot metal bar is submerged in a large reservoir of water whose temperature is 60°F. The temperature of the bar 20 s after submersion is 120°F. After 1 min submerged, the temperature has cooled to 100°F. (Let y be measured in degrees Fahrenheit, and t be measured in seconds.) (a) Determine the cooling constant k. k = s−1 (b) What is the differential equation satisfied by the temperature y(t)? (Use y for y(t).) y'(t) = (c) What is the formula for y(t)? y(t) = (d) Determine the temperature of the bar at the moment it is submerged. (Round your answer to one decimal place.)

Answers

Answer:

a.  k = -0.01014 s⁻¹

b.  [tex]\mathbf{\dfrac{dy}{dt} = - \dfrac{In(\dfrac{3}{2})}{40}(y-60)}[/tex]

c.  [tex]\mathbf{y(t) = 60+ \dfrac{60 \sqrt{3}}{\sqrt{2}} \ e^{\dfrac{-In(\dfrac{3}{2})\ t}{40}}}[/tex]

d.  y(t) = 130.485°F

Step-by-step explanation:

A hot metal bar is submerged in a large reservoir of water whose temperature is 60°F. The temperature of the bar 20 s after submersion is 120°F. After 1 min submerged, the temperature has cooled to 100°F.

(Let y be measured in degrees Fahrenheit, and t be measured in seconds.)

We are to determine :

a.  Determine the cooling constant k. k = s−1

By applying the new law of cooling

[tex]\dfrac{dT}{dt} = k \Delta T[/tex]

[tex]\dfrac{dT}{dt} = k(T_1-T_2)[/tex]

[tex]\dfrac{dT}{dt} = k (T - 60)[/tex]

Taking the integral.

[tex]\int \dfrac{dT}{T-60} = \int kdt[/tex]

㏑ (T -60) = kt + C

T - 60 = [tex]e^{kt+C}[/tex]

[tex]T = 60+ C_1 e^{kt} ---- (1)[/tex]

After 20 seconds, the temperature of the bar submersion is 120°F

T(20) = 120

From equation (1) ,replace t = 20s and T = 120

[tex]120 = 60 + C_1 e^{20 \ k}[/tex]

[tex]120 - 60 = C_1 e^{20 \ k}[/tex]

[tex]60 = C_1 e^{20 \ k} --- (2)[/tex]

After 1 min i.e 60 sec , the temperature  = 100

T(60) = 100

From equation (1) ; replace t = 60 s and T = 100

[tex]100 = 60 + c_1 e^{60 \ t}[/tex]

[tex]100 - 60 =c_1 e^{60 \ t}[/tex]

[tex]40 =c_1 e^{60 \ t} --- (3)[/tex]

Dividing equation (2) by (3) , we have:

[tex]\dfrac{60}{40} = \dfrac{C_1e^{20 \ k } }{C_1 e^{60 \ k}}[/tex]

[tex]\dfrac{3}{2} = e^{-40 \ k}[/tex]

[tex]-40 \ k = In (\dfrac{3}{2})[/tex]

- 40 k = 0.4054651

[tex]k = - \dfrac{0.4054651}{ 40}[/tex]

k = -0.01014 s⁻¹

 

b. What is the differential equation satisfied by the temperature y(t)?

Recall that :

[tex]\dfrac{dT}{dt} = k \Delta T[/tex]

[tex]\dfrac{dT}{dt} = \dfrac{- In (\dfrac{3}{2})}{40}(T-60)[/tex]

Since y is the temperature of the body , then :

[tex]\mathbf{\dfrac{dy}{dt} = - \dfrac{In(\dfrac{3}{2})}{40}(y-60)}[/tex]

(c) What is the formula for y(t)?

From equation (1) ;

where;

[tex]T = 60+ C_1 e^{kt} ---- (1)[/tex]

Let y be measured in degrees Fahrenheit

[tex]y(t) = 60 + C_1 e^{-\dfrac{In (\dfrac{3}{2})}{40}t}[/tex]

From equation (2)

[tex]C_1 = \dfrac{60}{e^{20 \times \dfrac{-In(\dfrac{3}{2})}{40}}}[/tex]

[tex]C_1 = \dfrac{60}{e^{-\dfrac{1}{2} {In(\dfrac{3}{2})}}}[/tex]

[tex]C_1 = \dfrac{60}{e^ {In(\dfrac{3}{2})^{-1/2}}}}[/tex]

[tex]C_1 = \dfrac{60}{\sqrt{\dfrac{2}{3}}}[/tex]

[tex]C_1 = \dfrac{60 \times \sqrt{3}}{\sqrt{2}}}[/tex]

[tex]\mathbf{y(t) = 60+ \dfrac{60 \sqrt{3}}{\sqrt{2}} \ e^{\dfrac{-In(\dfrac{3}{2})\ t}{40}}}[/tex]

(d) Determine the temperature of the bar at the moment it is submerged.

At the moment it is submerged t = 0

[tex]\mathbf{y(0) = 60+ \dfrac{60 \sqrt{3}}{\sqrt{2}} \ e^{\dfrac{-In(\dfrac{3}{2})\ 0}{40}}}[/tex]

[tex]\mathbf{y(t) = 60+ \dfrac{60 \sqrt{3}}{\sqrt{2}} }[/tex]

y(t) = 60 + 70.485

y(t) = 130.485°F

Can somebody please solve this problem for me!

Answers

Answer:

x = 200.674

Step-by-step explanation:

tan∅ = opposite/adjacent

Step 1: Find length of z

tan70° = 119/z

ztan70° = 119

z = 119/tan70°

z = 43.3125

Step 2: Find length z + x (denoted as y)

tan26° = 119/y

ytan26° = 119

y = 119/tan26°

y = 243.986

Step 3: Find x

y - z = x

243.986 - 43.3125 = x

x = 200.674

Tom is afraid of heights above 9 feet. He is asked to repair a side of a high deck. The bottom of the ladder must be placed 6 feet from a deck. The ladder is 10 feet long. How far above the ground does the ladder touch the deck? Is Tom afraid of the height?

Answers

Answer:

8 ftno

Step-by-step explanation:

The height on the side of the deck (h) can be found using the Pythagorean theorem. It tells you ...

  6^2 + h^2 = 10^2

  h = √(10^2 -6^2) = √64 = 8

The ladder touches the deck 8 feet above the ground. Tom is not afraid of that height.

Identify each x-value at which the slope of the tangent line to the function f(x) = 0.2x^2 + 5x − 12 belongs to the interval (-1, 1).

Answers

Answer:

Step-by-step explanation:

Hello, the slope of the tangent is the value of the derivative.

f'(x) = 2*0.2x + 5 = 0.4x + 5

So we are looking for

[tex]-1\leq f'(x) \leq 1 \\ \\<=> -1\leq 0.4x+5 \leq 1 \\ \\<=> -1-5=-6\leq 0.4x \leq 1-5=-4 \\ \\<=> \dfrac{-6}{0.4}\leq 0.4x \leq \dfrac{-4}{0.4} \\\\<=> \boxed{-15 \leq x\leq -10}[/tex]

Hope this helps.

Do not hesitate if you need further explanation.

Thank you

Using derivatives, it is found that the x-values in which the slope belong to the interval (-1,1) are in the following interval is (-15,-10).

What is the slope of the tangent line to a function f(x) at point x = x_0?

It is given by the derivative at x = x_0, that is:

m = f'(x_0)

In this problem, the function is:

f(x) = 0.2x^2 + 5x − 12

Hence the derivative is:

f'(x) = 0.4x + 5

For a slope of -1, we have that,

0.4x + 5 = -1

0.4x = -6

x = -15.

For a slope of 1, we have that,

0.4x + 5 = 1.

0.4x = -4

x = -10

Hence it is found that the x-values in which the slope belong to the interval (-1,1) are in the following interval is (-15,-10).

More can be learned about derivatives and tangent lines at;

brainly.com/question/8174665

#SPJ2

Other Questions
define micturition ?write the function of urinary system a jogger runs a mile in 8.92 minutes. 1 mi=1609m; calculate her speed in km/hr An object has a mass of 50.0 g and a volume of 10.5 cm cubed. What is the object's density? A. 60.5 g/cm cubed B. 0.21 g/cm cubed C. 4.76 g/cm cubed D. 525 g/cm cubed What point is the author trying to make in these sentences? white fang . Which is a likely location for primary succession? grassy hillside newly mowed field forest floor large boulder How is one product determined to specialize in between the two What tactics did CREEP use to undermine President Nixons political opponent in the 1972 election? It raised money from other political candidates. It threatened opponents so they would stop running. It distributed negative campaign flyers about opponents. It broke into the opponents offices to steal documents. The federal government has the legal authority to prevent a company from adding products through acquisitions if the acquisition threatens to lessen competition.A. TrueB. False Which tribes were from the southwestern part of North America? Select all that apply. Mogollon Shoshone Hohokam Anasazi Adena Find the equation of a circle with PQ as diameter, where P(2,-6) and Q(-6,-4) The magnitude of the magnetic field at point P for a certain electromagnetic wave is 2.12 T. What is the magnitude of the electric field for that wave at P? (c = 3.0 108 m/s) Which of the following pieces of information is given in a half-reaction?O A. The number of electrons transferred in the reactionB. The compounds that the atoms in the reaction came fromC. The state symbol of each compound in the reactionD. The spectator ions that are involved in the reaction You're on a fishing trip with friends and you look over and see a boat filled with people. You look away for a minute then look back at the same boat and yet you don't see a single person on it. Why? PLS ANSWER I WILL GIVE BRAINLIST AND A THANK YOU!!! :) "Twenty dogs are initially presented with numerous CS-tone/US-footshock pairings. These dogs are then placed in a shuttle box, and movement from one side of the shuttle to the other terminates periodic presentations of the CS tone. No shocks are delivered in the shuttle box, but the dogs learn to move to the other side of the box to escape the tone. This is an example of _________________________" Refer to the following scenario to answer the following questions. Five fishermen live in a village and have no other employment or income-earning possibilities besides fishing. They each own a boat that is suitable for fishing but does not have any resale value. Fish are worth $5 per pound, and the marginal cost of operating the boat is $500 per month. They all fish a river next to the village. According to the following schedule, they have determined that when there are more of them out on the river fishing, they each catch fewer fish per month.Boats Fish Caught per Boat (pounds) 1 200 2 190 3 175 4 155 5 130 How many fishermen will choose to operate their boats? What wavelength measuresA. Depth B. Distance C. Energy D. Speed E. TimeF. Volume A square and a triangle have equal perimeters. The lengths of the three sides of the triangle are 6.1 cm, 8.2 cm and 9.7 cm. What is the area of the square in square centimeters? Zhi and her friends moved on to the card tables at the casino. Zhi wanted to figure out the probability of drawing a king of clubs or an ace of clubs Stock Investment Transactions On September 12, 2,000 shares of Aspen Company were acquired at a price of $50 per share plus a $200 brokerage commission. On October 15, a $0.50-per-share dividend was received on the Aspen stock. On November 10, 1,200 shares of the Aspen stock were sold for $42 per share less a $150 brokerage commission. In your computations, round per share amounts to two decimal places. When required, round final answers to the nearest dollar. For a compound transaction, if an amount box does not require an entry, leave it blank. Journalize the entries to record the original purchase, the dividend, and the sale under the cost method.