Answer:
Step-by-step explanation:
Point-slope equation for line of slope m that passes through (x₀, y₀):
y-y₀ = m(x-x₀)
Slope =3 and (x₀, y₀)=(-3,0)
y = 3(x+3)
y = 3x+ 9
:::::
Slope-intercept equation for line of slope m and y-intercept b:
y = mx+b
m=1 and b= -4:
y = x-4
a test has 10 multiple-choice questions with 6 choices each, followed by 35 true/false questions. if a student guesses on each equation, how many ways can he answer the questions on the test
Answer:
6¹⁰×2³⁵
Step-by-step explanation:
he has 6 choices for the first multiple choice question.
and for each of those he had again 6 more choices to answer the second question. 6×6 = 36
so, for all 10 multiple choice questions he answer in
6¹⁰ different ways = 60466176 ways
then there are 35 true/false questions, which are Bausch again multiple choice questions but with only 2 options instead of 6.
so we get 2³⁵ different possibilities. a huge number.
and they're possible for each of the 60466176 ways of the multiple choice part.
so, in total we have
6¹⁰×2³⁵ different answer possibilities.
In a certain year Congress debated a bill. A poll of 1000 Americans indicated 401 opposed 293 favored 306 not sure. What is the probability that random person was in favor
10 times as much as 9
Answer:
90
Step-by-step explanation:
10 x 9
=> 90
10 times 9 is 90.
Multiply:
2 × (–21) × 7
A)
294
B)
–273
C)
–7
D)
–294
Answer:
[tex]2\times \left(-21\right)\times \:7[/tex]
PEMDAS order of operations:
[tex]2\times \left(-21\right)=-2\times \:21=-42[/tex]
[tex]=-42\times \:7[/tex]
[tex]=-294[/tex]
D) -294 is your answer
OAmalOHopeO
A data set includes data from student evaluations of courses. The summary statistics are n=89, x=3.44, s=0.67. Use a 0.05 significance level to test the claim that the population of student course evaluations has a mean equal to 3.50. Assume that a simple random sample has been selected. Identify the null and alternative hypotheses, test statistic, P-value, and state the final conclusion that addresses the original claim.
What are the null and alternative hypotheses?
A.
H0: μ=3.50
H1: μ>3.50
B.
H0: μ=3.50
H1: μ<3.50
C.
H0: μ≠3.50
H1: μ=3.50
D.
H0: μ=3.50
H1: μ≠
(I also need the test statistic and p-value) thank you so much in advance :)
We're told that "the claim that the population of student course evaluations has a mean equal to 3.50". So this means μ=3.50 makes up the null H0
The alternative would be H1: μ ≠ 3.50 since it's the opposite of the claim made in the null.
We go with answer choice D to form the null and alternative hypotheses.
The sign ≠ in the alternative hypothesis tell us that we have a two tail test.
---------------------------------------
Let's compute the test statistic
z = (xbar - mu)/(s/sqrt(n))
z = (3.44 - 3.50)/(0.67/sqrt(89))
z = -0.84483413122896
z = -0.84
The test statistic is roughly -0.84
---------------------------------------
Despite not knowing what sigma is (aka the population standard deviation), we can see that n > 30 is the case. So we can use the Z distribution. This is the standard normal distribution. When n > 30, the T distribution is fairly approximately the same as the Z distribution.
Use a calculator or a Z table to determine that
P(Z < -0.84) = 0.2005
which is approximate
Because we're doing a two-tail test, this means we double that result to get 2*0.2005 = 0.401
The p-value is roughly 0.401
-----------------------------------------
Since the p-value is larger than alpha = 0.05, we don't have enough evidence to reject the null. So you can say that we fail to reject the null, or we accept the null.
The conclusion based on that means that μ=3.50 must be true (unless other evidence comes along to disprove this). In other words, the mean evaluation score from students appears to be 3.50
find the two intersection points
(x+1)^2 +(y+2)^2 = 16
3x+ 4y = 1
Show your steps please
Answer:
Our two intersection points are:
[tex]\displaystyle (3, -2) \text{ and } \left(-\frac{53}{25}, \frac{46}{25}\right)[/tex]
Step-by-step explanation:
We want to find where the two graphs given by the equations:
[tex]\displaystyle (x+1)^2+(y+2)^2 = 16\text{ and } 3x+4y=1[/tex]
Intersect.
When they intersect, their x- and y-values are equivalent. So, we can solve one equation for y and substitute it into the other and solve for x.
Since the linear equation is easier to solve, solve it for y:
[tex]\displaystyle y = -\frac{3}{4} x + \frac{1}{4}[/tex]
Substitute this into the first equation:
[tex]\displaystyle (x+1)^2 + \left(\left(-\frac{3}{4}x + \frac{1}{4}\right) +2\right)^2 = 16[/tex]
Simplify:
[tex]\displaystyle (x+1)^2 + \left(-\frac{3}{4} x + \frac{9}{4}\right)^2 = 16[/tex]
Square. We can use the perfect square trinomial pattern:
[tex]\displaystyle \underbrace{(x^2 + 2x+1)}_{(a+b)^2=a^2+2ab+b^2} + \underbrace{\left(\frac{9}{16}x^2-\frac{27}{8}x+\frac{81}{16}\right)}_{(a+b)^2=a^2+2ab+b^2} = 16[/tex]
Multiply both sides by 16:
[tex](16x^2+32x+16)+(9x^2-54x+81) = 256[/tex]
Combine like terms:
[tex]25x^2+-22x+97=256[/tex]
Isolate the equation:
[tex]\displaystyle 25x^2 - 22x -159=0[/tex]
We can use the quadratic formula:
[tex]\displaystyle x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
In this case, a = 25, b = -22, and c = -159. Substitute:
[tex]\displaystyle x = \frac{-(-22)\pm\sqrt{(-22)^2-4(25)(-159)}}{2(25)}[/tex]
Evaluate:
[tex]\displaystyle \begin{aligned} x &= \frac{22\pm\sqrt{16384}}{50} \\ \\ &= \frac{22\pm 128}{50}\\ \\ &=\frac{11\pm 64}{25}\end{aligned}[/tex]
Hence, our two solutions are:
[tex]\displaystyle x_1 = \frac{11+64}{25} = 3\text{ and } x_2 = \frac{11-64}{25} =-\frac{53}{25}[/tex]
We have our two x-coordinates.
To find the y-coordinates, we can simply substitute it into the linear equation and evaluate. Thus:
[tex]\displaystyle y_1 = -\frac{3}{4}(3)+\frac{1}{4} = -2[/tex]
And:
[tex]\displaystyle y _2 = -\frac{3}{4}\left(-\frac{53}{25}\right) +\frac{1}{4} = \frac{46}{25}[/tex]
Thus, our two intersection points are:
[tex]\displaystyle (3, -2) \text{ and } \left(-\frac{53}{25}, \frac{46}{25}\right)[/tex]
What is the minimum perimeter of a rectangle with an area of 625 mm^2
Tina invests $3,700 into an account with a 4.4% interest that is compounded quarterly. How much money will she have in
this account if she keeps it for 8 years?
Round your answer to the nearest cent.
Do NOT round until you have calculated the final answer.
Answer:
bacoot anjing
lo siapa hah kan bisa jawab sendiri sok sok minta bantuuuu
Step-by-step explanation:
maluiiin
Answer:
$5250.96
Step-by-step explanation:
Future value= Present value(1+r)^n
=3700(1+0.011)^32
r=4.4÷100÷4
n=8×4
Mr. Howe ate 1/3 of a pizza and then Mr. Kurt ate 1/8 of the same pizza. How
much of the pizza has been eaten? *
12/24
Step One: We need to convert 1/3 and 1/8 so both have the same denominator, so we need to find the a number that is able to be multiply by 3 and 8 for the process.
Step Two: 1/3 x 8= 8/24 and 1/8x3= 3/24
Step Three: Add our new fractions: 3/24+8/24= 12/24
Step Four: Subtract 12 by 24: 24-12= 12; our answer is 12/24 or half the pizza was eaten
I hope I've help!
Do this please helpppp
Answer:
y = [tex]\frac{20}{9}[/tex]
Step-by-step explanation:
Since the figures are similar then the corresponding sides are in proportion, that is
[tex]\frac{JH}{PQ}[/tex] = [tex]\frac{FM}{ST}[/tex] , substitute values
[tex]\frac{6}{4}[/tex] = [tex]\frac{7}{3y-2}[/tex] ( cross- multiply )
6(3y - 2) = 28
18y - 12 = 28 ( add 12 to both sides )
18y = 40 ( divide both sides by 18 )
y = [tex]\frac{40}{18}[/tex] = [tex]\frac{20}{9}[/tex]
Answer:
20/9
Step-by-step explanation:
since the 2 are similar,
JH/PQ = FM/ST
6/4 = 7/(3y-2)
6(3y-2) = 7*4
18y-12=28
18y = 40
y = 40/18 = 20/9 = 2 2/9
Determine the dimension of the vector space. M4,2
STEP 1: Determine the number of linearly independent vectors needed to span M4,2. The basis for M4,2 has linearly independent vectors.
STEP 2: Using the result from Step 1, determine the dimension of M4,2.
Answer:
STEP 1
M_{4,2} is set of 4x2 matrices hence each matrix has 4*2=8 entries. Each entry can be filled independently.
Hence its basis has 8 linearly independent vectors.
STEP 2
Dimension= cardinality of basis = 8.
find the surface area of the prism
Answer:
Base area=5*12=60
Height is 4
Perimeter or the base is 2*(12+5)=34
Surface area is 2B+Ph=120+136=256
A telephone call arrived at a switchboard at random within a one-minute interval. The switch board was fully busy for 10 seconds into this one-minute period. What is the probability that the call arrived when the switchboard was not fully busy
Answer:
50/60 = .8333= 83.33%
Step-by-step explanation:
The probability that the call arrived when the switchboard was not fully busy is 0.75.
What is Normal Distribution?A probability distribution that is symmetric about the mean is the normal distribution, sometimes referred to as the Gaussian distribution. It demonstrates that data that are close to the mean occur more frequently than data that are far from the mean. The normal distribution appears as a "bell curve" on a graph.
Given:
Here X follows uniform distribution with parameter a and b.
Where,
a = 0 and b = 1.
Then,
The density function of Y is given by:
P( 15 < Y ≤ 60)
or, P( 0.25 < Y ≤ 1)
So, P( 0.25 < Y ≤ 1) = [tex]\int\limits^{1}_{0.25}{f(y) \, dy[/tex]
= [tex][y]^1 _ {0.25}[/tex]
= (1- 0.25)
= 0.75
Hence, The probability that the call arrived when the switchboard was not fully busy is 0.75.
Learn more about Normal Distribution here:
https://brainly.com/question/29509087
#SPJ2
solve similar triangles (advanced)
solve for x
Answer:
27/2 =x
Step-by-step explanation:
We can write a ratio to solve
3 2
----- = ---------
3+x 11
Using cross products
3*11 = 2(3+x)
33 = 6+2x
Subtract 6 from each side
33-6 = 6+2x-6
27 = 2x
27/2 = 2x/2
27/2 =x
How much state tax is withheld from $36,200 if the tax rate is 4%?
Answer:
$1448
Step-by-step explanation:
Tax=rate*amount=(4/100)*36200=1448
3)
Write an inequality for the graph below. If necessary, use
<= for < or >= for.
Kinda stuck and running out of time
Answer:
Step-by-step explanation:
For an ordered pair left parenthesis x comma y right parenthesis in a relation, the x element represents the
Answer:
the x éléments représente the domain
x represents the value on the x-axis and the coordinate is also known as abscissa.
What is coordinate geometry?Coordinate geometry is the study of geometry using the points in space. Using this, it is possible to find the distance between the points, the dividing line is m:n ratio, finding the mid-point of the line, etc.
For an ordered pair left parenthesis x comma y right parenthesis in a relation that is (x, y).
Here x represents the value on the x-axis and the coordinate is also known as abscissa.
More about the coordinate geometry link is given below.
https://brainly.com/question/1601567
Express 18 hours to 2 days in its lowest term
Answer:
1 : 3
Step-by-step explanation:
We know that 1 days is 24 hours
2 days = 2*24 = 48 hours
16 hours : 48 hours
Divide each by 16
16/16 : 48/16
1 : 3
Answer:
[tex]3 : 8[/tex]
Step-by-step explanation:
[tex]18h : 2d \\ 18h : 2 \times 24h \\ 18 :48 \\ 3 : 8[/tex]
How many real solutions does this system of equations have? x2 +3 = y
3х — у+1 = 0
Answer:
Step-by-step explanation:
y = x²+3
y = 3x+1
x² + 3 = 3x +1
x² - 3x + 2 = 0
(x-2)(x-1) = 0
x = 2, 1
Two solutions
(2,7) and (1,4)
Hi I need help :( I can’t figure these out
Step-by-step explanation:
I do don't either ok wjshjddshsj
please help me with this question!
how do you change a hot air baloon descends 200 feet per minute from a altitude of 1000 feet into a algebraic expression.
find the measure of the angle indicated
Answer:
Step-by-step explanation:
59°
Find the remainder when f(x) = –2x3 + x2 - 4x + 1 is divided by x + 3.
Answer:
Step-by-step explanation:
The remainder when f(x) is divided by x + 3 would be 76.
What is remainder theorem for polynomials?If there is a polynomial p(x), and a constant number 'a', then
[tex]\dfrac{p(x)}{(x-a)} = g(x) + p(a)[/tex]
where g(x) is a factor of p(x).
We have been given a function;
[tex]f(x) = -2x^3 + x^2 - 4x + 1[/tex]
We need to find the remainder when f(x) is divided by x + 3.
So, Let p(x) = x + 3
p(x) = 0
x + 3 = 0
x = -3
Substitute in the given function f(x);
[tex]f(x) = -2x^3 + x^2 - 4x + 1\\\\f(-3) = -2(-3)^3 + (-3)^2 - 4(-3) + 1\\\\f(-3) = 54 + 9 + 12 + 1\\\\f(-3) = 76[/tex]
Thus, the remainder when f(x) is divided by x + 3 would be 76.
Learn more about remainder;
https://brainly.com/question/16394707
#SPJ5
Lesson 9.6: Steady-State Analysis.) Consider a particular data set of 100,000 stationary waiting times obtained from a large queueing system. Suppose your goal is to get a confidence interval for the unknown mean. Would you rather use (a) 50 batches of 2000 observations or (b) 10000 batches of 10 observations each?
Answer:
I would rather use:
(b) 10,000 batches of 10 observations each.
Step-by-step explanation:
It is easier to have 10,000 batches of 10 observations each than to have 50 batches of 2,000 observations. Human errors are reduced with fewer observations. For example, Hadoop, a framework used for storing and processing big data, relies on batch processing. Using batch processing that divides the 100,000 stationary waiting times into 10 observations with 10,000 batches each is more efficient than having 2,000 observations with 50 batches each.
Which inequality is true?
O A. 1 2 > 2
OB. 8 - T > 5
O C. 1071 > 30
O D. 1+4<7
Answer:
true
Step-by-step explanation:
Answer:
C
Step-by-step explanation:
A
[tex]\frac{12}{2\pi }[/tex] ≈ 1.91 < 2
B
8 - π 8 - 3.14 = 4.86 < 5
C
10π ≈ 31.42 > 30 ← True
D
π + 4 = 3.14 + 4 = 7.14 > 7
Option C is a true inequality
Given:
AD
diameter of Circle P.
Dec
B
A
If m < 1 = 30°, then m AB
15
30
60
Answer:
The measure of an arc is the size of the corresponding central angle, so angle 1 for AB,
Answer: B 30
A scientist is studying the growth and development of an epidemic virus with a growth rate of 9% per month that has infected 3,124 people. If this rate continues, what will be the number of infected people in another 9 months? Round your answer to the nearest whole number.
Answer:
About 6,785 people will be infected about nine months.
Step-by-step explanation:
We can write an exponential function to represent the situation. The standard exponential function is given by:
[tex]\displaystyle f(x) = a(r)^x[/tex]
Where a is the initial value, r is the rate, and x, in this case, is the time that has passed in months.
3,124 people have already been infected. Thus, our initial value a = 3124.
And an additional 9% will be infected per month. Therefore, our rate r will be 1 + 9% or 1.09.
Hence, our function is:
[tex]\displaystyle f(x) = 3124(1.09)^x[/tex]
Then after nine months, the total amount of infected people will be f(9):
[tex]\displaystyle f(9) = 3124(1.09)^{(9)}[/tex]
Use a calculator:
[tex]\displaystyle f(9) \approx 6785[/tex]
About 6,785 people will be infected about nine months.
Answer:
7,022
Step-by-step explanation:
Will give brainliest answer
Answer:
Step-by-step explanation:
A(1) is the amount after 1 decade.
A(0.1) is the amount after 1 year.
Every year, the amount of CO₂ increases by a factor of 1.06^(0.1) ≅ 1.0058
There is a language with 12 distinct letters. How many words that are less than four letters long can possibly be formed? (Assume any combination of letters is valid and letters can be repeated). Can you help me out with this one?
Answer:
1884
Step-by-step explanation:
1)If you hear the condition "less than four letters" it means that each word can consist of 3,2 or 1 letter. Firstly, consider the easiest situation with the word from one letter. There are 12 letters, so there are 12 words from one letter.
Then the words from two letters. The first letter of such a word can be chosen in 12 means(because 12 letters are available), then the second letter can be chosen in 12 means too. 12*12=144 words with 2 letters. (Multiplying, not adding, because each two words form one combination).
Then for the words from three letters, use the same rule, 12 means for the first letter, 12 means for the second letter, 12 means for the third letter. 12*12*12=1728 words.
Having particular words from 1,2,3 letters add them to get total quantity of words: 12+144+1728=1884words,that is the answer.