Answer:
Weight of wastage=179.775kg
weight of rice cultivated= 585.225 kg
percentage of rice cultivated=76.5%
Step-by-step explanation:
Area of land=100 square meters
Cultivated rice=765kg
Wastage=23.5%
1) Weight of the wastage=23.5% of 765kg
=23.5/100 × 765
=17977.5 / 100
=179.775 kg
2) Weight and percentage of rice cultivated.
weight of rice cultivated = 765 kg - 179. 775 kg
= 585.225 kg
percentage of rice cultivated = 100 - 23.5
= 76.5%
3) if area is increased 40 times in size
New area=1000 square meters × 40
=40,000 square meters
Cultivated rice= 765kg × 40
=30,600 kg
Cultivated rice excluding wastage=585.225 kg × 40
=23,409 kg
Estimate the solution to the following system of equations by graphing 3x +7y=10 2x-3y=-6
please mark me brain list
Answer:
(- 1/2,5/3)
Step-by-step explanation:
simplify 5 x 5^2 in index form
Answer:
5x(25)
Step-by-step explanation:
Simplify 27^(-2/3) x 25^(1/2) x 5^0 9 5 9/5 5/9
Answer:
[tex]\frac{5}{9}[/tex]
Step-by-step explanation:
Using the rules of exponents/ radicals
[tex]a^{\frac{m}{n} }[/tex] ⇔ [tex]\sqrt[n]{a^{m} }[/tex] , [tex]a^{0}[/tex] = 1
[tex]a^{-m}[/tex] = [tex]\frac{1}{a^{m} }[/tex]
Given
[tex]27^{-\frac{2}{3} }[/tex] × [tex]25^{\frac{1}{2} }[/tex] × [tex]5^{0}[/tex]
= [tex]\frac{1}{27^{\frac{2}{3} } }[/tex] × [tex]\sqrt{25}[/tex] × 1
= [tex]\frac{1}{9}[/tex] × 5 × 1
=[tex]\frac{5}{9}[/tex]
Which expressions are factors of the quadratic function represented by this graph?
A. x and (x+6)
B. (x-6) and (x+6)
C. x and (x-6)
D. x and -6x
Answer:
C. [tex]x[/tex] and $(x-6)$
Step-by-step explanation:
The roots of the quadratic equation are $0$ and $6$.
Hence the equation is $(x-0)(x-6)=x(x-6)$
Answer:
See below
Step-by-step explanation:
Hiiii can you help me ?
Answer:
842, 743, 394, 305, 836
Step-by-step explanation:
We arbitrarily chose the ones digit to start with as 2. (It must be 5 or less.) The other two digits are chosen by a random number generator, as shown in the attached.
The 5 three-digit numbers we chose are ...
842, 743, 394, 305, 836
Answer:
The only criteria the question gives are that there must be 5 numbers, and the numbers must have 3 digits. The ones digit in the numbers should go up by 1.
So, we can have 111, 112, 113, 114, and 115.
Hope this helps!
Tim owns a clothing store where he designs pairs of shorts, s, and T-shirts, t.
He sells the shorts for $12 and the T-shirts for $8 each. Tim can work 18
hours a day, at most. It takes him 30 minutes to design a T-shirt and 45
minutes to design a pair of shorts. He must design at least 12 items each
day, but he cannot design more than 30 items in one day. Which set of
inequalities below represents this scenario?
A. s 2 12 + $ ss 30 + tiss 24-0.66t, s2; 0; t2 0
B. s> 12-tss 30 - t Ss 24 -0.66t, s 2 0; t> 0
O c. s? 12-ts? 30-tss 24 -0.66t, s 2 0;t20
D. S 2 12-tss 30-ts 24 -0.66t, s 20; t 0
Answer:
The correct option is;
B. s ≥ 12 - t, s ≤ 30 - t, s ≤ 24 - 0.66·t
Step-by-step explanation:
The given parameters are;
The number of T-shirts, t, and shorts, s, Tim must design a day = 12
The maximum number of T-shirts and shorts Tim can design a day = 30
The maximum number of hours Tim can work = 18 hours
Therefore, we have;
The number of shorts Tim designs in a day is ≥ The minimum number of T-shirts and shorts Tim must design a day less the number of T-shirts Tim designs
Which gives;
s ≥ 12 - t
Also the number of shorts Tim designs in a day is ≤ The maximum number of T-shirts, and shorts, Tim can design a day less the number of T-shirts Tim designs
Which gives;
s ≤ 30 - t
The number of 45 minute period for the design of shorts in 18 hours = 18×60/45 = 24
The fraction of 36 minutes in 45 minutes = 36/45 = 0.667
Therefore we have;
The number of shorts Tim designs in a day is ≤ The number of 45 minute periods in 18 hours less the number of 36 minutes periods used to design T-shirts
Which gives;
s ≤ 24 - 0.66·t
The correct option is s ≥ 12 - t, s ≤ 30 - t, s ≤ 24 - 0.66·t.
Answer:
B. s> 12-tss 30 - t Ss 24 -0.66t, s 2 0; t> 0
Step-by-step explanation:
Hope this helps!!
What is the smallest positive integer $n$ such that $\frac{n}{n+101}$ is equal to a terminating decimal?
Answer:
n = 24
Step-by-step explanation:
Given the fraction:
[tex]$\frac{n}{n+101}$[/tex]
To find:
Smallest positive integer [tex]$n$[/tex] such that the fraction is equal to a terminating decimal.
Solution:
The rule that a fraction is equal to a terminating decimal states that, the denominator must contain factors of only 2 and 5.
i.e. Denominator must look like [tex]2^m\times 5^n[/tex], only then the fraction will be equal to a terminating decimal.
Now, let us have a look at the denominator, [tex]n+101[/tex]
Let us use hit and trial method to find the value of [tex]n[/tex] as positive integer.
n = 1, denominator becomes 102 = [tex]2 \times 3 \times 17[/tex] not of the form [tex]2^m\times 5^n[/tex].
n = 4, denominator becomes 105 = [tex]5 \times 3 \times 7[/tex] not of the form [tex]2^m\times 5^n[/tex].
n = 9, denominator becomes 110 = [tex]2 \times 5 \times 11[/tex] not of the form [tex]2^m\times 5^n[/tex].
n = 14, denominator becomes 115 = [tex]5 \times 23[/tex] not of the form [tex]2^m\times 5^n[/tex].
n = 19, denominator becomes 120 = [tex]5 \times 3 \times 2^3[/tex] not of the form [tex]2^m\times 5^n[/tex].
n = 24, denominator becomes 125 = [tex]2^0 \times 5 ^3[/tex] It is of the form [tex]2^m\times 5^n[/tex].
So, the answer is n = 24
Someone please help me ASAP
Answer:
the percentage share for BBC2 remained almost the same at about 11 % each year
if you look at the chart the BBC2 almost remains stable between 10 and 12 %
1980 ( between 39 and 51)
1985 ( between 37 and 49 ) and so on
( these numbers are not exactly the same , it is about or approximately)
What angle does an arc 6.6cm in length subtends at the centre of a circle of radius 14cm. Use π = 22/7)
Answer:
STEP 1: Find the circumference:
Circumference = 2πr
Circumference = 2π(14) = 28π cm
............................................................................................
STEP 2: Find the length of the arc:
Length of the arc = 36/360 x 28π
Length of the arc = 8.8 cm
.............................................................................................
Answer: The length of the arc is 8.8 cm
............................................................................................
hope it helpssss
Mark it as brilliant answer plzzz
ФωФ
Answer:
27°
Step-by-step explanation:
arc length = circumference × fraction of circle
let x be the central angle, then
2πr × [tex]\frac{x}{360}[/tex] = 6.6
2 × [tex]\frac{22}{7}[/tex] × 14 × [tex]\frac{x}{360}[/tex] = 6.6
88 ×[tex]\frac{x}{360}[/tex] = 6.6 ( multiply both sides by 360 )
88x = 2376 ( divide both sides by 88 )
x = 27
Thus central angle is 27°
7.If 18, a, b, - 3 are in A.P., then a+b = ?
(1 Point)
1212
1515
1616
1111
please give the answer as fast as you can
please
Answer: 15
Step-by-step explanation:
General terms in AP
f, f+d, f+2d, f+3d, .... , where f= first term and d= common difference.
The given A.P. : 18, a, b, - 3
here, f= 18
[tex]f+d= a ...(i)\\\\f+2d = b ...(ii)\\\\f+3d= -3 ...(iii)\\\\[/tex]
Put f= 18 in (iii) ,
[tex]18+3d=-3\\\\\Rightarrow\ 3d= -3-18\\\\\Rightarrow\ 3d= -21\\\\\Rightarrow\ d=-7[/tex]
Put f= 18 and d= -7 in (i) and (ii) , we get
[tex]a=18+(-7)=11\\\\b=18+2(-7)\\\\\Rightarrow\ b=18-14\\\\\Rightarrow\ b=4[/tex]
Now, [tex]a+b= 11+4=15[/tex]
Hence, the correct answer is "15".
(-2 + 1)² + 5(12 : 3) - 9.
Answer:
5(12 : 3) -8
Step-by-step explanation
when you solve the first half of the equation you get 1.
so 9-1 is 8.
Given that the trinomial x^2+ 11x + 28 has a factor of x +4, what is the other factor?
Answer:
the other factor is (x+7)
Step-by-step explanation:
Given x^2+11x+28
factor into
x^2+7x + 4x + 28
=x(x+7) + 4(x+7)
= (x+4)(x+7)
Answer: the other factor is (x+7)
How do the number line graphs of the solutions sets of Negative 23 greater-than x and x greater-than-or-equal-to negative 23 differ?
Answer:
For "Negative 23 greater-than x" , highlight the left half of the number line starting at -23 and use a parenthesis ) on -23.
For "x greater-than-or-equal-to negative 23", highlight the right half of the number line starting at -23, and use a square bracket [ on -23.
Step-by-step explanation:
Start by locating the number -23 on the number line. Please see attached image to accompany the explanation.
In the first case: "Negative 23 greater-than x" , which is expressed mathematically as:
[tex]-23 >x[/tex]
notice that "x" has to be strictly smaller than the number -23, therefore those sought x values must reside to the left of the number -23, so we have to highlight that half of the number line. Apart from that, we need to include a symbol on top of the number -23, that indicates that -23 itself shouldn't be considered as part of the set, that symbol is by convention a parenthesis ).
In the second case: "x greater-than-or-equal-to negative 23", which is expressed mathematically as:
[tex]x\geq -23[/tex]
notice that "x" has to be greater than or equal to the number -23, therefore those sought x values must reside to the right of the number -23, so we have to highlight that half of the number line. Apart from that, we need to include a symbol on top of the number -23, that indicates that -23 itself should be considered as part of the set, that symbol is by convention a square bracket [.
Answer:
the answer is A
Step-by-step explanation:
I need 51-55 Thanks You :D no
Answer:
Below
Step-by-step explanation:
All figures are squares. The area of a square is the side times itself
Let A be the area of the big square and A' the area of the small one in all the 5 exercices
51)
● (a) = A - A'
A = c^2 and A' = d^2
● (a) = c^2 - d^2
We can express this expression as a product.
● (b) = (c-d) (c+d)
■■■■■■■■■■■■■■■■■■■■■■■■■■
52)
● (a) = A-A'
A = (2x)^2 = 4x^2 and A'= y^2
● (a) = 4x^2 - y^2
● (b) = (2x-y) ( 2x+y)
■■■■■■■■■■■■■■■■■■■■■■■■■■
53)
● (a) = A-A'
A = x^2 and A' = y^2
● (a) = x^2-y^2
● (b) = (x+y) (x-y)
■■■■■■■■■■■■■■■■■■■■■■■■■■
54)
● (a) = A-A'
A = (5a)^2 = 25a^2 and A' =(2b)^2= 4b^2
● (a) = 25a^2 - 4b^2
● (a) = (5a-2b) (5a+2b)
■■■■■■■■■■■■■■■■■■■■■■■■■■
55)
● (a) = A - 4A'
A = (3x)^2 = 9x^2 and A'= (2y)^2 = 4y^2
● (a) = 9x^2 - 4 × 4y^2
● (a) = 9x^2 - 16y^2
● (a) = (3x - 4y) (3x + 4y)
please help me on this
Answer:
YZ = 8.5
Step-by-step explanation:
Since RY is an angle bisector then the ratio of the sides of the triangle are equal to the corresponding ratio of the base, that is
[tex]\frac{YX}{YZ}[/tex] = [tex]\frac{XR}{ZR}[/tex] , substitute values
[tex]\frac{11.9}{YZ}[/tex] = [tex]\frac{7}{5}[/tex] ( cross- multiply )
7YZ = 59.5 ( divide both sides by 7 )
YZ = 8.5
4x + 5y = 19 , 5y - 4x = 38
Answer:
Step-by-step explanation:
Adding both equations
4x+5y+5y-4x=19+38
10y = 57
y= 5.7
Subtracting equation i from ii
5y-4x-4x-5y=38-19
-8x=9
x= -0.9
When simplified completely, the product of a monomial and a binomial is
a trinomial.
Answer:
the answer is ; Never
Hope this answer correct :)
Answer:
the answer is never
Step-by-step explanation:
I need Helpppp quick!!!!
Answer:
G
Step-by-step explanation:
let his fixed price be x and his hourly fee be y;
270 = 4y + x
420 = 7y + x
x is common in both equations
equate the two;
x = 270-4y and x = 420-7y
270-4y = 420-7y
3y = 150
y = 50
x = 270-4*50
x = 70
The following are scores obtained by some students in a test.
8 18 10 14 18 11 13 14 13 17 15 8 16 13. Find the mode of the distribution
Answer:
[tex] \boxed{13}[/tex]
Step-by-step explanation:
Arranging the data in ascending order:
8 , 8 , 10 , 11 , 13 , 13 ,13 , 14 , 14 , 15 , 16 , 17 , 18 , 18 ,
In the case of discrete data, mode can be found just by inspection, i.e just by taking an item with highest frequency.
Here, 13 has the highest frequency
So, Mode = 13
Extra information
Mode
The mode of a set of data is the value with the highest frequency. A distribution that has two modes is called bimodal. The mode of a set of data is denoted by Mo.
Hope I helped!
Best regards!
which graph represents (x,y)(x,y)left parenthesis, x, comma, y, right parenthesis-pairs that make the equation y = 0.5x+5y=0.5x+5y, equals, 0, point, 5, x, plus, 5 true?
The graph of [tex]\mathbf{y = 0.5x + 5}[/tex] has a slope of 0.5, and a y-intercept of 5
The equation is given as:
[tex]\mathbf{y = 0.5x + 5}[/tex]
A linear equation is represented as:
[tex]\mathbf{y = mx + c}[/tex]
Where m represents the slope, and c represents the y-intercept
So, by comparison:
m = 0.5
c = 5
This means that:
The slope is 0.5, and the y-intercept is 5
Hence, the graph of [tex]\mathbf{y = 0.5x + 5}[/tex] has a slope of 0.5, and a y-intercept of 5
See attachment for the graph of [tex]\mathbf{y = 0.5x + 5}[/tex]
Read more about linear equations at:
https://brainly.com/question/11897796
3rd one i just did it on edge :P
please help me as soon as you can please
Answer:
f(x) = 5 * ( 8/5) ^x
Step-by-step explanation:
f(x) = a b^x
Let x = 0
5 = a * b^0
5 = a*1
a = 5
Let x = 1
8 = 5 * b^1
Divide each side by 5
8/5 = b
f(x) = 5 * ( 8/5) ^x
The height of the rectangular prism is 2 m. If its volume is 72 cubic meters, what is the area of the base, in square meters?
Answer:
Base area is 36 square meters
Step-by-step explanation:
The volume of a rectangular prism is V = (height)(length)(width). We know all of these dimensions except for the area of the base, which is (length)(width).
Solving this equation for (length)(width), we get:
volume 72 m^3
(length)(width) = (area of base) = -------------- = ------------- = 36 m^2
height 2 m
A wave has a time period of 0.2 s Calculate the frequency of the wave.
Answer:
[tex]\huge\boxed{f = 5\ Hz}[/tex]
Step-by-step explanation:
Given:
Time period = T = 0.2 sec
Required:
Frequency = f = ?
Formula:
f = 1/T
Solution:
f = 1/0.2
f = 5 Hertz
Answer:
[tex] \boxed{\sf Frequency \ (f) \ of \ the \ wave = 5 \ Hz} [/tex]
Given:
Time Period (T) = 0.2 s
To Find:
Frequency (f) of the wave
Step-by-step explanation:
[tex] \sf Frequency (f) = \frac{1}{Time Period (T)} [/tex]
[tex] \sf f = \frac{1}{0.2} [/tex]
[tex] \sf f = \frac{1}{0.2} \times \frac{10}{10} [/tex]
[tex] \sf f = \frac{10}{2} [/tex]
[tex] \sf f = \frac{ \cancel{2} \times 5}{ \cancel{2}} [/tex]
[tex] \sf f = 5 \: Hz[/tex]
The pepper plant has \dfrac{2}{3} 3 2 start fraction, 2, divided by, 3, end fraction as many fruits on it as the tomato plant has. The tomato plant has 999 fruits on it.
Answer:
6 pepper fruits
Step-by-step explanation:
Given the following :
Fraction of pepper in terms of tomato = 2/3
Number of fruits on pepper plant = 9
Therefore number of pepper fruits on pepper plant:
2/3 * number of tomato fruits
2/3 * 9
(2 * 3) = 6
6 pepper fruits.
I need helps will give you a good rating.
Answer: x = 3
Step-by-step explanation:
Sqrt(x+7) - 1 = x
Sqrt(x+7) = x + 1
x+7 = x^2 + 1
x = x^2 - 6
x=3
this one from maths pls help
Answer:
The total amount left by Manavi and Kuber is: (1) 399
Step-by-step explanation:
Manavi
saving account + amount spent at the mall: 1/'2 + 1/4 = 3/4
left over: 1 - 3/4 = 4-3/4 = 1/4
1260 ( 1/4) = 315
The total leftover for Manavi is Rs.315.
Now do the same steps with Kuber.
Kuber
saving account + amount spent at the mall: 1/3+ 3/5 = 14/15
left over: 1- 14/15 = 15-14/15 = 1/15
1260 (1/15) = 84
The total leftover for Kuber is Rs.84.
Lastly, just add both left over amount together.
315+84 = 399
The total amount left by Manavi and Kuber is: (1) 399
Question 5 of 10
Which type of unemployment is characterized by a worker looking for a job
when there is no reason that he or she should not find one?
A. Structural unemployment
B. Seasonal unemployment
C. Frictional unemployment
D. Periodic unemployment
7 is subtracted from the quotient of 48 divided by the sum of 5 and differences of 11 and 8
Write it out as an equation:
(48 /(5+(11-8))) -7
Simplify:
(48/(5+3))-7
(48/8)-7
6-7 = -1
The answer is -1
The volume of a sphere whose diameter is 18 centimeters is π cubic centimeters. If its diameter were reduced by half, its volume would be of its original volume.
Answer:
3053.5517 cm^3 ; 1/8
Step-by-step explanation:
Given the following :
Volume (V) of sphere = (4/3)πr^3 where r = radius
Diameter of sphere = 18 ; radius(r) = diameter / 2 = 18/2 = 9cm
V = (4/3) × π × 9^3
V = 1.3333 × π × 729
V = 3053.5517 cm^3
When diameter(d) is reduced to half
d = d/2
Volume (V1) of sphere with diameter 'd' =
V1 = (4/3)π(d/2)^3
Volume (V2) of sphere with diameter 'd' reduced to half, d = d/2, d/2 * 1/2 = d/4
V2 = (4/3)π(d/4)^3
V1 / V2 = [(4/3)π(d/2)^3] / [(4/3)π(d/4)^3]
V1 / V2 = (d/2)^3 / (d/4)^3
V1 / V2 = [d^3 / 2^3] / [d^3 / 4^3]
V1 / V2 = 8 / 64
V1 / V2 = 1 / 8
Answer:
first blank is 972
second blank is 1/8
yup
Step-by-step explanation:
In a circle, an arc measuring 130° is what percentage of the circumference of the circle
Answer:
≈ 36.1%
Step-by-step explanation:
In any circle the following ratio is equal
[tex]\frac{arc}{circmference}[/tex] = [tex]\frac{centralangle}{360}[/tex] = [tex]\frac{130}{360}[/tex] , thus
percentage = [tex]\frac{130}{360}[/tex] × 100% ≈ 36.1%
an arc measuring 130° is approximately 36.11% of the circumference of the circle.
To find the percentage of the circumference that an arc measuring 130° represents, we need to calculate the ratio of the arc length to the circumference of the circle and then convert it to a percentage.
The circumference of a circle is given by the formula C = 2πr, where r is the radius of the circle.
Let's assume the radius of the circle is r.
The circumference of the circle is C = 2πr.
To find the length of the arc corresponding to 130°, we need to calculate the fraction of the total angle (360°) that 130° represents:
Fraction of the angle = (130° / 360°) = (13/36).
Since the fraction of the angle is equal to the fraction of the arc length to the circumference, the length of the arc can be calculated as:
Arc length = Fraction of the angle * Circumference = (13/36) * (2πr).
Now, to find the percentage of the circumference that the arc length represents, we divide the arc length by the circumference and multiply by 100:
Percentage = (Arc length / Circumference) * 100
Percentage = [(13/36) * (2πr)] / (2πr) * 100
Percentage = (13/36) * 100
Percentage = 36.11%
Therefore, an arc measuring 130° is approximately 36.11% of the circumference of the circle.
Learn more about arc length here
https://brainly.com/question/10266974
#SPJ2