Answer:
Step-by-step explanation:
Hello, please consider the following.
Question 1.
[tex]\dfrac{3^{2x+1}}{3^{3x-4}\cdot 3^{6-7x}}=27^x\\\\<=> 3^{2x+1}\cdot 3^{-3x+4}\cdot 3^{-6+7x}=3^{2x+1-3x+4-6+7x}=(3^3)^x=3^{3x}\\\\<=> 2x+1-3x+4-6+7x=3x\\\\<=> 6x-1=3x\\\\<=> 3x=1\\\\<=> \boxed{x=\dfrac{1}{3}}[/tex]
Question2.
[tex]2^{x+y}=8=2^3 <=>x+y=3\\\\3^{x-y}=1=3^0<=>x-y=0[/tex]
So, it gives (by adding the two equations) 2x = 3
[tex]\boxed{x=\dfrac{3}{2} \ \ and \ \ y = x = \dfrac{3}{2} }[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
Simply. Who ever answers this will be marked Brainlist.
Answer:
Step-by-step explanation:
Hello,
[tex]r^3s^{-2}\cdot 8r^{-3}s^4\cdot 4rs^5\\\\=r^{3-3+1}s^{-2+4+5}\cdot 8\cdot 4\\\\\boxed{=32\cdot r\cdot s^7}[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
What is the simplified form of the following expression? 2 StartRoot 18 EndRoot + 3 StartRoot 2 EndRoot + StartRoot 162 EndRoot 6 StartRoot 2 EndRoot 18 StartRoot 2 EndRoot 30 StartRoot 2 EndRoot 36 StartRoot 2 EndRoot
Answer:
[tex]18\sqrt2[/tex]
Step-by-step explanation:
To simplify:
[tex]2 \sqrt{18}+ 3 \sqrt2+ \sqrt{162 }[/tex]
First of all, let us write 18 and 162 as product of prime factors:
[tex]18 = 2 \times \underline{3 \times 3}\\162 = 2 \times \underline{3 \times 3} \times \underline{3 \times 3}[/tex]
The pairs are underlined as above.
While taking roots, only one of the numbers from the pairs will be chosen.
Now, taking square roots.
[tex]\sqrt{18} =3 \sqrt2[/tex]
[tex]162 = 3 \times 3 \times \sqrt 2 = 9 \sqrt2[/tex]
So, the given expression becomes:
[tex]2 \sqrt{18}+ 3 \sqrt2+ \sqrt{162 } = 2 \times 3\sqrt2 + 3\sqrt2 +9\sqrt2\\\Rightarrow 6\sqrt2 + 3\sqrt2 +9\sqrt2\\\Rightarrow \sqrt2(6+3+9)\\\Rightarrow \bold{18\sqrt2}[/tex]
So, the answer is:
[tex]18\sqrt2[/tex] or 18 StartRoot 2 EndRoot
Answer:
its B. 18 sqrt(2)
Step-by-step explanation:
just took test
Please help ! I’ll mark you as brainliest if correct.
Answer:
D = -87Dx = 174Dy = -435Dz = 0(x, y, z) = (-2, 5, 0)Step-by-step explanation:
The determinant of the coefficient matrix is ...
[tex]D=\left|\begin{array}{ccc}2&5&3\\4&-1&-4\\-5&-2&6\end{array}\right|\\\\=2(-1)(6)+5(-4)(-5)+3(4)(-2)-2(-4)(-2)-5(4)(6)-3(-1)(-5)\\\\=-12+100-24-16-120-15=\boxed{-87}[/tex]
The other determinants are found in similar fashion after substituting the constants on the right for each of the above matrix columns, in turn.
Those determinants are ...
[tex]D_x=\left|\begin{array}{ccc}21&5&3\\-13&-1&-4\\0&-2&6\end{array}\right|=174[/tex]
[tex]D_y=\left|\begin{array}{ccc}2&21&3\\4&-13&-4\\-5&0&6\end{array}\right|=-435[/tex]
[tex]D_z=\left|\begin{array}{ccc}2&5&21\\4&-1&-13\\-5&-2&0\end{array}\right|=0[/tex]
The solutions are ...
x = 174/-87 = -2
y = -435/-87 = 5
z = 0
That is, (x, y, z) = (-2, 5, 0).
find the perimeter of a square of sides 10.5cm
Answer:
Perimeter = 42 cm
Step-by-step explanation:
A square has all equal sides so you would just add 10.5 + 10.5 + 10.5 + 10.5 to get 42 cm.
Answer:
42 cm
Step-by-step explanation:
Side of square = 10.5 cm (given)
Perimeter of square = Side X 4
= 10.5 X 4
= 42 cm
HOPE THIS HELPED YOU !
:)
Use Lagrange multipliers to minimize the function subject to the following two constraints. Assume that x, y, and z are nonnegative. Question 18 options: a) 192 b) 384 c) 576 d) 128 e) 64
Complete Question
The complete question is shown on the first uploaded image
Answer:
Option C is the correct option
Step-by-step explanation:
From the question we are told that
The equation is [tex]f (x, y , z ) = x^2 +y^2 + z^2[/tex]
The constraint is [tex]P(x, y , z) = x + y + z - 24 = 0[/tex]
Now using Lagrange multipliers we have that
[tex]\lambda = \frac{ \delta f }{ \delta x } = 2 x[/tex]
[tex]\lambda = \frac{ \delta f }{ \delta y } = y[/tex]
[tex]\lambda = \frac{ \delta f }{ \delta z } = 2 z[/tex]
=> [tex]x = \frac{ \lambda }{2}[/tex]
[tex]y = \frac{ \lambda }{2}[/tex]
[tex]z = \frac{ \lambda }{2}[/tex]
From the constraint we have
[tex]\frac{\lambda }{2} + \frac{\lambda }{2} + \frac{\lambda }{2} = 24[/tex]
=> [tex]\frac{3 \lambda }{2} = 24[/tex]
=> [tex]\lambda = 16[/tex]
substituting for x, y, z
=> x = 8
=> y = 8
=> z = 8
Hence
[tex]f (8, 8 , 8 ) = 8^2 +8^2 + 8^2[/tex]
[tex]f (8, 8 , 8 ) = 192[/tex]
Please help me solve for the median !!!
Answer:
50.93
Step-by-step explanation:
Add up the frequencies:
2 + 5 + 14 + 15 + 21 + 18 + 15 + 9 + 2 = 101
Divide by 2: 101/2 = 50.5
So the median is the 51st number, with 50 below and 50 above.
Add up the frequencies until you find the interval that contains the 51st number.
2 + 5 + 14 + 15 = 36
2 + 5 + 14 + 15 + 21 = 57
So the median is in the group 49.5 − 51.5. To estimate the median, we use interpolation. Find the slope of the line from (36, 49.5) to (57, 51.5).
m = (51.5 − 49.5) / (57 − 36)
m = 2/21
So at x = 51:
2/21 = (y − 49.5) / (51 − 36)
y = 50.93
I NEED this answered within the next 30 minutes! Please it is simple. There is an error in this. What is it?
Answer:
(a). x = 80°
(b). x = 7.2 units
Step-by-step explanation:
Angle formed between the tangents from a point outside the circle measure the half of the difference of intercepted arcs.
(a). Here the intercepted arcs are,
Measure of major arc = 360° - 100°
= 260°
Measure of minor arc = 100°
x° = [tex]\frac{1}{2}[m(\text{Major arc})-m(\text{Minor arc})][/tex]
= [tex]\frac{1}{2}(260-100)[/tex]
x = 80°
(b). If a secant and tangent are drawn form a point outside the circle, then square of the measure of tangent is equal to the product of the measures of the secant segment and and its external segment.
x² = 4(4 + 9)
x² = 4 × 13
x² = 52
x = √52
x = 7.211 ≈ 7.2 units
Three out of every ten dentists recommend a certain brand of fluoride toothpaste. Which assignment of random digits would be used to simulate the random sampling of dentists who prefer this fluoride toothpaste?
Answer:
eddfdgdccggģdffcdrrfxddxcvgfx
The heat evolved in calories per gram of a cement mixture is approximately normally distributed. The mean is thought to be 100, and the standard deviation is 2. You wish to test H0: μ = 100 versus H1: μ ≠ 100 with a sample of n = 9 specimens.
A. If the acceptance region is defined as 98.5 le x- 101.5, find the type I error probability alpha.
B. Find beta for the case where the true mean heat evolved is 103.
C. Find beta for the case where the true mean heat evolved is 105. This value of beta is smaller than the one found in part (b) above. Why?
Answer:
A.the type 1 error probability is [tex]\mathbf{\alpha = 0.0244 }[/tex]
B. β = 0.0122
C. β = 0.0000
Step-by-step explanation:
Given that:
Mean = 100
standard deviation = 2
sample size = 9
The null and the alternative hypothesis can be computed as follows:
[tex]\mathtt{H_o: \mu = 100}[/tex]
[tex]\mathtt{H_1: \mu \neq 100}[/tex]
A. If the acceptance region is defined as [tex]98.5 < \overline x > 101.5[/tex] , find the type I error probability [tex]\alpha[/tex] .
Assuming the critical region lies within [tex]\overline x < 98.5[/tex] or [tex]\overline x > 101.5[/tex], for a type 1 error to take place, then the sample average x will be within the critical region when the true mean heat evolved is [tex]\mu = 100[/tex]
∴
[tex]\mathtt{\alpha = P( type \ 1 \ error ) = P( reject \ H_o)}[/tex]
[tex]\mathtt{\alpha = P( \overline x < 98.5 ) + P( \overline x > 101.5 )}[/tex]
when [tex]\mu = 100[/tex]
[tex]\mathtt{\alpha = P \begin {pmatrix} \dfrac{\overline X - \mu}{\dfrac{\sigma}{\sqrt{n}}} < \dfrac{\overline 98.5 - 100}{\dfrac{2}{\sqrt{9}}} \end {pmatrix} + \begin {pmatrix}P(\dfrac{\overline X - \mu}{\dfrac{\sigma}{\sqrt{n}}} > \dfrac{101.5 - 100}{\dfrac{2}{\sqrt{9}}} \end {pmatrix} }[/tex]
[tex]\mathtt{\alpha = P ( Z < \dfrac{-1.5}{\dfrac{2}{3}} ) + P(Z > \dfrac{1.5}{\dfrac{2}{3}}) }[/tex]
[tex]\mathtt{\alpha = P ( Z <-2.25 ) + P(Z > 2.25) }[/tex]
[tex]\mathtt{\alpha = P ( Z <-2.25 ) +( 1- P(Z < 2.25) })[/tex]
From the standard normal distribution tables
[tex]\mathtt{\alpha = 0.0122+( 1- 0.9878) })[/tex]
[tex]\mathtt{\alpha = 0.0122+( 0.0122) })[/tex]
[tex]\mathbf{\alpha = 0.0244 }[/tex]
Thus, the type 1 error probability is [tex]\mathbf{\alpha = 0.0244 }[/tex]
B. Find beta for the case where the true mean heat evolved is 103.
The probability of type II error is represented by β. Type II error implies that we fail to reject null hypothesis [tex]\mathtt{H_o}[/tex]
Thus;
β = P( type II error) - P( fail to reject [tex]\mathtt{H_o}[/tex] )
∴
[tex]\mathtt{\beta = P(98.5 \leq \overline x \leq 101.5) }[/tex]
Given that [tex]\mu = 103[/tex]
[tex]\mathtt{\beta = P( \dfrac{98.5 -103}{\dfrac{2}{\sqrt{9}}} \leq \dfrac{\overline X - \mu}{\dfrac{\sigma}{n}} \leq \dfrac{101.5-103}{\dfrac{2}{\sqrt{9}}}) }[/tex]
[tex]\mathtt{\beta = P( \dfrac{-4.5}{\dfrac{2}{3}} \leq Z \leq \dfrac{-1.5}{\dfrac{2}{3}}) }[/tex]
[tex]\mathtt{\beta = P(-6.75 \leq Z \leq -2.25) }[/tex]
[tex]\mathtt{\beta = P(z< -2.25) - P(z < -6.75 )}[/tex]
From standard normal distribution table
β = 0.0122 - 0.0000
β = 0.0122
C. Find beta for the case where the true mean heat evolved is 105. This value of beta is smaller than the one found in part (b) above. Why?
[tex]\mathtt{\beta = P(98.5 \leq \overline x \leq 101.5) }[/tex]
Given that [tex]\mu = 105[/tex]
[tex]\mathtt{\beta = P( \dfrac{98.5 -105}{\dfrac{2}{\sqrt{9}}} \leq \dfrac{\overline X - \mu}{\dfrac{\sigma}{n}} \leq \dfrac{101.5-105}{\dfrac{2}{\sqrt{9}}}) }[/tex]
[tex]\mathtt{\beta = P( \dfrac{-6.5}{\dfrac{2}{3}} \leq Z \leq \dfrac{-3.5}{\dfrac{2}{3}}) }[/tex]
[tex]\mathtt{\beta = P(-9.75 \leq Z \leq -5.25) }[/tex]
[tex]\mathtt{\beta = P(z< -5.25) - P(z < -9.75 )}[/tex]
From standard normal distribution table
β = 0.0000 - 0.0000
β = 0.0000
The reason why the value of beta is smaller here is that since the difference between the value for the true mean and the hypothesized value increases, the probability of type II error decreases.
(21x-3)+21=23x+6 solve
Answer:
False
Step-by-step explanation:
You Cnat solve it
Answer:
you cannot solve it
Step-by-step explanation:
false
If tanA = 3
evaluate
CosA + sinA\
casA - SinA
Answer:
Hi, there!!!
I hope you mean to evaluate cosA+ sonA /cosA - sinA.
so, i hope the answer in pictures will help you.
solve for x: -3(x + 1)= -3(x + 1) - 5
Answer:
No solution : 0= -5Step-by-step explanation:
[tex]-3\left(x+1\right)=-3\left(x+1\right)-5\\\\\mathrm{Add\:}3\left(x+1\right)\mathrm{\:to\:both\:sides}\\\\-3\left(x+1\right)+3\left(x+1\right)=-3\left(x+1\right)-5+3\left(x+1\right)\\\\\mathrm{Simplify}\\\\0=-5\\\\\mathrm{The\:sides\:are\:not\:equal}\\\\\mathrm{No\:Solution}[/tex]
You are studying for your final exam of the semester up to this point you received 3 exam scores of 61% 62% and 86% to receive a grade of c and the class you must have an average exam score between 70% and 79% for all four exams including the final find the widest range of scores that you can get on the final exam in order to receive a grade of C for the class 63 to 100% 71 to 100% 68 to 97
There will be a total of 4 test scores including the final exam. To get a 70, the 4 tests need to equal 4 x 70 = 280 points , to be 79, they have to equal 4 x 79 = 316 points.
The 3 already done = 61 + 62 + 86 = 209 points.
The final exam needs to be between :
280 -209 = 71
316 -209 = 107. The answer would be between 71 and 100%
Question 1: A triangle has sides with lengths 5, 6, and 7. Is the triangle right, acute, or obtuse?
A)Right
B)Obtuse
C)Can't be determined
D) Acute
Question 2: A 15-foot statue casts a 20-foot shadow. How tall is a person who casts a 4-foot-long shadow?
A)0.33 feet
B)3.75 feet
C)3 feet
D)5 feet
Question 3: A triangle has sides with lengths 17, 12, and 9. Is the triangle right, acute, or obtuse?
A)Acute
B)Right
C)Can't be determined
D)Obtuse
Question 4: Two friends are standing at opposite corners of a rectangular courtyard. The dimensions of the courtyard are 12 ft. by 25 ft. How far apart are the friends?
A)21.34 ft.
B)21.93 ft.
C)27.73 ft.
D)19.21 ft.
Answer:
Question 1 = D) Acute
Question 2 = C)3 feet
Question 3 = D) Obtuse
Question 4 = C)27.73 ft.
Step-by-step explanation:
Question 1: A triangle has sides with lengths 5, 6, and 7. Is the triangle right, acute, or obtuse?
In order to be able to accurately classify that a triangle with 3 given sides is either a right , acute or obtuse angle, we use the Pythagoras Theorem
Where:
If a² + b² = c² = Right angle triangle
If a² +b² > c² = Acute triangle.
If a² +b² < c² = Obtuse triangle.
It is important to note that the length ‘‘c′′ is always the longest.
Therefore, for the above question, we have lengths
5 = a, 6 = b and c = 7
a² + b² = c²
5² + 6² = 7²
25 + 36 = 49
61 = 49
61 ≠ 49, Hence 61 > 49
Therefore, this is an Acute Triangle
Question 2: A 15-foot statue casts a 20-foot shadow. How tall is a person who casts a 4-foot-long shadow?
This is question that deals with proportion.
The formula to solve for this:
Height of the statue/ Length of the shadow of the person = Height of the person/ Length of the shadow of the person
Height of the statue = 15 feet
Length of the shadow of the person = 20 feet
Height of the person = unknown
Length of the shadow of the person = 4
15/ 20 = Height of the person/4
Cross Multiply
15 × 4 = 20 × Height of the person
Height of the person = 15 × 4/20
= 60/20
Height of the person = 3 feet
Therefore, the person is 3 feet tall.
Question 3: A triangle has sides with lengths 17, 12, and 9. Is the triangle right, acute, or obtuse?
In order to be able to accurately classify that a triangle with 3 given sides is either a right , acute or obtuse angle, we use the Pythagoras Theorem
Where:
If a² + b² = c² = Right angle triangle
If a² +b² > c² = Acute triangle.
If a² +b² < c² = Obtuse triangle.
It is important to note that the length ‘‘c′′ is always the longest.
Therefore, for the above question, we have lengths 17, 12, 9
9 = a, 12 = b and c = 17
a² + b² = c²
9² + 12² = 17²
81 + 144 = 289
225 = 289
225 ≠ 289
225 < 289
Hence, This is an Obtuse Triangle.
Question 4: Two friends are standing at opposite corners of a rectangular courtyard. The dimensions of the courtyard are 12 ft. by 25 ft. How far apart are the friends?
To calculate how far apart the two friends are we use the formula
Distance = √ ( Length² + Breadth²)
We are given dimensions: 12ft by 25ft
Length = 12ft
Breadth = 25ft
Distance = √(12ft)² + (25ft)²
Distance = √144ft²+ 625ft²
Distance = √769ft²
Distance = 27.730849248ft
Approximately ≈27.73ft
Therefore, the friends are 27.73ft apart.
|5x|=3 please help me
Let X denote the day she gets enrolled in her first class and let Y denote the day she gets enrolled in both the classes. What is the distribution of X
Answer:
X is uniformly distributed.
Step-by-step explanation:
Uniform Distribution:
This is the type of distribution where all outcome of a certain event have equal likeliness of occurrence.
Example of Uniform Distribution is - tossing a coin. The probability of getting a head is the same as the probability of getting a tail. The have equal likeliness of occurrence.
Lines a and b are parallel. If the slope of line a is , what is the slope of line b?
A.
-
B.
4
C.
D.
-4
Answer:
C. 1/4
Step-by-step explanation:
Parallel lines always have the same slope.
Answer:
C. 1/4
Step-by-step explanation:
Parallel lines have the same slope. If line b is parallel to line a, and line a has slope 1/4, then line b has slope 1/4.
A regular polygon inscribed in a circle can be used to derive the formula for the area of a circle. The polygon area can be expressed in terms of the area of a triangle. Let s be the side length of the polygon, let r be the hypotenuse of the right triangle, let h be the height of the triangle, and let n be the number of sides of the regular polygon. polygon area = n(12sh) Which statement is true? As h increases, s approaches r so that rh approaches r². As r increases, h approaches r so that rh approaches r². As s increases, h approaches r so that rh approaches r². As n increases, h approaches r so that rh approaches r².
Answer:
Option (D)
Step-by-step explanation:
Formula to get the area of a regular polygon in a circle will be,
Area = [tex]n[\frac{1}{2}\times (\text{Base})\times (\text{Height})][/tex]
= [tex]n[\frac{1}{2}\times (\text{s})\times (\text{h})][/tex]
Here 'n' is the number of sides.
If n increases, h approaches r so that 'rh' approaches r².
In other words, if the number of sides of the polygon gets increased, area of the polygon approaches the area of the circle.
Therefore, Option (4) will be the answer.
In this exercise it is necessary to have knowledge about polygons, so we have to:
Letter D
Then using the formula for the area of a regular polygon we find that:
[tex]A=n(1/2*B*H)\\=n(1/2*S*H)[/tex]
So from this way we were not able to identify the option that best corresponds to this alternative.
See more about polygons at brainly.com/question/17756657
Foram prescritos 500mg de dipirona para uma criança com febre.Na unidade tem disponivel ampola de 1g/2ml.Quantos g vão ser administrados no paciente
De acordo com a disponibilidade da unidade, há apenas a seguinte dosagem: 1g/2mL - ou seja, uma grama de dipirona a cada 2mL
O enunciado está meio mal formulado, pois é dito que foram prescritos 500mg de dipirona e é essa quantidade de farmaco que a criança tem que tomar. Deseja-se saber quantos mL deverao ser administrados.
Fazendo a classica regra de 3, podemos chegar no volume desejado:
(atentar que 500mg = 0,5g)
g mL
1 --------- 2
0,5 --------- X
1 . X = 0,5 . 2
X = 1mLWhich statements about the dilation are true? Check all that apply. Triangle X prime Y prime Z prime. Point X prime is 2 units from the center of dilation C and point Z prime is 3 units from the center of dilation. Triangle X Y Z. Point X is 5 units from point C and point Z is 7.5 units from point C. The center of dilation is point C. It is a reduction. It is an enlargement. The scale factor is 2.5. The scale factor is Two-fifths.
Answer:
I only know two right answers.
A: The center of dilation is point C.
C: It is an enlargement.
E: The scale factor is 2/5.
Step-by-step explanation:
These two answers are correct because When you look in the center you see a C.
You tell if it is a reduction because the pre image is small but the image is big.
The center of dilation is point C.
It is an enlargement.
The scale factor is 2/5
The correct options are D, F, H.
What is dilation?Resizing an item uses a transformation called dilation. Dilation is used to enlarge or shorten the structures. The result of this transformation is an image with the same shape as the original. However, there is a variation in the shape's size. The initial form should be stretched or contracted during a dilatation.
Given:
The transformation of the figure is dilation.
The figure is given in the attached image.
From the diagram:
The center of dilation is point C.
It is an enlargement.
The scale factor is 2/5
Therefore, all the correct statements are given above.
To learn more about the dilation in geometry;
https://brainly.com/question/10713409
#SPJ6
The value of 3 in 783.97
Answer:
place value of 3 in 783.97 is 3
Step-by-step explanation:
Answer:
Units
Step-by-step explanation:
The units start counting from 3 because after the point that is the 9 start counting tenth
Time
(minutes)
Water
(gallons)
1
16.50
1.5
24.75
2
33
find the constant of proportionality for the second and third row
Answer:
16.50
Step-by-step explanation:
Constant of proportionality = no of gallons of water per 1 minute.
In the first row, we have 16.50 gallons of water per 1 minute.
In the 2nd row, we have 24.75 gallons of water in 1.5 minutes. In 1 minute, we will have 24.75 ÷ 1.5 = 16.50 gallons
In the 3rd row, we have 33 gallons in 2 minutes. In 1 minute, we will have 33 ÷ 2 = 16.50 gallons.
We can see that there seems to be the same constant of proportionality for the 2nd and 3rd row, which is 16.50.
Thus, a relationship between gallons of water (w) and time (t), considering the constant, 16.50, can be written as: [tex] w = 16.50t [/tex]
This means the constant of proportionality, 16.50, is same for all rows.
What is the domain of the set of ordered pairs?
(8, -13); ( 0,-5); (4, -9); (-3,2)
The domain is the input values, which are the x values.
The x values in the given pairs are: 8, 0,4,-3
The domain set is (-3, 0, 4, 8)
The required domain of the set of ordered pairs is [8, 0, 4, -3]
Given that,
Set of ordered pair; (8, -13); ( 0,-5); (4, -9); (-3,2).
We have to determine,
The domain of the set of ordered pair.
According to the question,
The domain refers to the set of possible input values.
The domain of a graph consists of all the input values shown on the x-axis.
A relation is a set of ordered pairs.
The domain is the set of all the first components of the ordered pairs.
Then,
Set of ordered pair; (8, -13); ( 0,-5); (4, -9); (-3,2).
Here, Set of all the input values on the x-axis.
Therefore,
The set of values of x is { 8,0,4,-3 }
Hence, The required domain of the set of ordered pairs is [8, 0, 4, -3]
To know more about Domain click the link given below.
https://brainly.com/question/19704059
The cost of a daily rental car is as follows: The initial fee is $39.99 for the car, and it costs $0.20 per mile. If Julie's final bill was $100.00 before taxes, how many miles did she drive?
Answer:
300.05 miles
Step-by-step explanation:
initial fee= $39.99
final bill = $ 100
cost =$ 0.20 per mile
remaining amount = $ 60.01
solution,
she drive = remaining amount / cost
=60.01/0.20
=300.05 miles
Answer:
500 miles
Step-by-step explanation:
Let us use cross multiplication to find the unknown amount.
Given:
1) Cost for 1 mile=$0.20
2)Cost for x miles=$100
Solution:
No of miles Cost
1) 1 $0.20
2)x $100
By cross multiplying,
100 x 1= 0.20x
x=100/0.20
x=500 miles
Thank you!
Salaries of 42 college graduates who took a statistics course in college have a mean, , of . Assuming a standard deviation, , of $, construct a % confidence interval for estimating the population mean .
Answer:
The 99% confidence interval for estimating the population mean μ is ($60,112.60, $68087.40).
Step-by-step explanation:
The complete question is:
Salaries of 42 college graduates who took a statistics course in college have a mean, [tex]\bar x[/tex] of, $64, 100. Assuming a standard deviation, σ of $10,016 construct a 99% confidence interval for estimating the population mean μ.
Solution:
The (1 - α)% confidence interval for estimating the population mean μ is:
[tex]CI=\bar x\pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex]
The critical value of z for 99% confidence interval is:
[tex]z_{\alpha/2}=z_{0.01/2}=z_{0.005}=2.57[/tex]
Compute the 99% confidence interval for estimating the population mean μ as follows:
[tex]CI=\bar x\pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}}[/tex]
[tex]=64100\pm 2.58\times\frac{10016}{\sqrt{42}}\\\\=64100+3987.3961\\\\=(60112.6039, 68087.3961)\\\\\approx (60112.60, 68087.40)[/tex]
Thus, the 99% confidence interval for estimating the population mean μ is ($60,112.60, $68087.40).
5x+4(-x-2)=-5x+2(x-1)+12
Answer:
x=9/2
Step-by-step explanation:
Let's solve your equation step-by-step.
5x+4(−x−2)=−5x+2(x−1)+12
Step 1: Simplify both sides of the equation.
5x+4(−x−2)=−5x+2(x−1)+12
5x+(4)(−x)+(4)(−2)=−5x+(2)(x)+(2)(−1)+12 (Distribute)
5x+−4x+−8=−5x+2x+−2+12
(5x+−4x)+(−8)=(−5x+2x)+(−2+12) (Combine Like Terms)
x+−8=−3x+10
x−8=−3x+10
Step 2: Add 3x to both sides.
x−8+3x=−3x+10+3x
4x−8=10
Step 3: Add 8 to both sides.
4x−8+8=10+8
4x=18
Step 4: Divide both sides by 4.
4x/4=18/4
x=9/2
Please help. I’ll mark you as brainliest if correct!
Answer:
9 3 -7 -13
4 -4 11 8
0 9 2 -4
Step-by-step explanation:
9 3 -7 -13
4 -4 11 8
0 9 2 -4
Answer: 9 3 -7 -13
4 -4 11 8
0 9 2 -4
Step-by-step explanation:
A professional soccer player kicked a ball across the field. The ball’s height, in meters, is modeled by the function graphed below. What's the average rate of change between the point when the ball reached its maximum height and the point where it hit the ground?
Answer:
Hey there!
You can think of the rate of change as the slope of a quadratic function- here we see that it is 9/-3, or - 3.
Let me know if this helps :)
Answer:
–3 meters per second
Step-by-step explanation:
10) How many possible outfit combinations come from six shirts, three
slacks, and five ties? *
A 15
B 18
C 30
D 90
Answer:
The answer is D)90
Hope I helped
PLEASE HELP ASAP RN!!!!!!
Answer:
3sqrt(2)
Step-by-step explanation:
sqrt(32) - sqrt(2)
rewriting sqrt(32)
sqrt(16*2) - sqrt(2)
sqrt(16) * sqrt(2) - sqrt(2)
4 sqrt(2) - sqrt(2)
3sqrt(2)