Answer:
19.0%
Step-by-step explanation:
The probability that a student in the sample data is enrolled in painting Given that the student is female is a conditional probability and can be defined as :
Let,
F = Female ; P = painting
P(Painting Given female) = P(P|F) = (PnF) / F
From the table :
(PnF) = 16
F = 84
Hence,
P(P|F) = 16 / 84 = 0.19047 = 0.19047 * 100%
P(P|F) = 19.0%
PLEASE HELP!!! What is the equation of the line perpendicular to 2x – 3y = 13 that passes through the point (–6, 5)?
Answer:
2x + 3y -3=0
Step-by-step explanation:
The given equation of the line is ,
[tex]\implies 2x - 3y = 13 [/tex]
Now convert it into slope intercept form to get the slope , we get ,
[tex]\implies 3y = 2x - 13 \\\\\implies y =\dfrac{2}{3}x -\dfrac{13}{2}[/tex]
Therefore the slope is ,
[tex]\implies m = \dfrac{2}{3} [/tex]
We know that the product of slope of perpendicular lines is -1 . Therefore the slope of the perpendicular line will be ,
[tex]\implies m_{perpendicular}= -\dfrac{2}{3} [/tex]
Now one of the point is (-6,5) .On Using point slope form , we have ,
[tex]\implies y-y_1 = m( x - x_1) \\\\\implies y - 5 = -\dfrac{2}{3}( x + 6 ) \\\\\implies 3y - 15 = -2x -12
\\\\\implies 2x + 3y -15+12=0 \\\\\implies \underline{\underline{ 2x + 3y -3=0 }}[/tex]
Answer:
y = - [tex]\frac{3}{2}[/tex]x - 4
Step-by-step explanation:
2x – 3y = 13
3y = 2x + 13
y = [tex]\frac{2}{3}[/tex]x + [tex]\frac{13}{3}[/tex]
slope = 2/3
negative reciprocal = -3/2
y = -3/2x + b
(-6, 5)
5 = (-3/2)(-6) + b
5 = 9 + b
b = -4
y = -3/2x - 4
Necesito ayuda con esto
Answer:
La suma de las dos matrices cuadradas de dimensión 2 es [tex]\vec U = \left[\begin{array}{cc}-1&11\\2&5\end{array}\right][/tex].
Step-by-step explanation:
Considerando que se tratan de dos matrices de igual dimensión y cuyos elementos son números reales, conocemos que la adición entre dos matrices consiste en las sumas de los elementos de igual posición, esto es, los elementos que están localizados en las mismas filas y columnas, entonces, la suma es:
[tex]\vec A = \left[\begin{array}{cc}1&2\\-1&0\end{array} \right][/tex], [tex]\vec B = \left[\begin{array}{cc}-2&9\\3&5\end{array}\right][/tex]
[tex]\vec U = \vec A + \vec B = \left[\begin{array}{cc}1 + (-2)&2+9\\-1 + 3&0 + 5\end{array}\right][/tex]
[tex]\vec U = \left[\begin{array}{cc}-1&11\\2&5\end{array}\right][/tex]
La suma de las dos matrices cuadradas de dimensión 2 es [tex]\vec U = \left[\begin{array}{cc}-1&11\\2&5\end{array}\right][/tex].
PLEASE HELP WILL MARK BRAINLIEST
Answer:
AB
Step-by-step explanation:
From the question given above, we were told that triangle ABC is similar to triangle PTG.
Since both triangles are similar, the following assumptions hold:
PG / AC = PT / AB = TG / BC
Comparing the equation above with those given in the question, the missing part of the equation is AB
The lengths of nails produced in a factory are normally distributed with a mean of 6.13 centimeters and a standard deviation of 0.06 centimeters. Find the two lengths that separate the top 7% and the bottom 7%. These lengths could serve as limits used to identify which nails should be rejected.
Answer:
A value of 6.0415 centimeters separates the bottom 7%, while a value of 6.2185 centimeters separates the top 7%.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 6.13 centimeters and a standard deviation of 0.06 centimeters.
This means that [tex]\mu = 6.13, \sigma = 0.06[/tex]
Value that separated the top 7%:
The 100 - 7 = 93rd percentile, which is X when Z has a p-value of 0.93, so X when Z = 1.475.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]1.475 = \frac{X - 6.13}{0.06}[/tex]
[tex]X - 6.13 = 1.475*0.06[/tex]
[tex]X = 6.2185[/tex]
Value that separates the bottom 7%:
The 7th percentile, which is X when Z has a p-value of 0.07, so X when Z = -1.475.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-1.475 = \frac{X - 6.13}{0.06}[/tex]
[tex]X - 6.13 = -1.475*0.06[/tex]
[tex]X = 6.0415[/tex]
A value of 6.0415 centimeters separates the bottom 7%, while a value of 6.2185 centimeters separates the top 7%.
Yellowstone National Park is a popular held trip destination. This year the senior class at
High School A and the senior class at High School B both planned trips there. The senior
class at High School A rented and filed 2 vans and 3 buses with 153 students. High
School Brented and nited il vans and 10 buses with 534 students. Every van had the
same number of students in it as did the buses. Find the number of students in each van
and in each bus.
Van: 39
Bus: 18
Van: 21
Bus: 21
o
Van: 27
Bus: 19
.
Van: 18
Bus: 39
Answer:
Who was the first president of United States?
To teach computer programming to employees, many firms use on the job training. A human resources administrator wishes to review the performance of trainees on the final test of the training. The mean of the test scores is 72 with a standard deviation of 5. The distribution of test scores is approximately normal. Find the z-score for a trainee, given a score of 82.
Answer:
The z-score for the trainee is of 2.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
The mean of the test scores is 72 with a standard deviation of 5.
This means that [tex]\mu = 72, \sigma = 5[/tex]
Find the z-score for a trainee, given a score of 82.
This is Z when X = 82. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{82 - 72}{5}[/tex]
[tex]Z = 2[/tex]
The z-score for the trainee is of 2.
The diagram below is divided into equal parts. Which fraction of the parts is white?
A diagram is divided into 4 blue parts and 3 white parts.
Three-sevenths
Four-sevenths
Three-fourths
Four-thirds
Answer: This problem is a fraction since we have several equal parts that make up one whole. The problem asks us to talk about the relationship of white pieces to the whole. Since we know the whole is made up of 7 pieces (4 blue parts and 3 white parts = 7 total parts), then 7 will be our denominator (number on the bottom of the fraction).
Now that we have our number on the bottom, we need to look back at the question to carefully decide what parts of the whole we are looking at. The question wants to know how many of the parts are white. We know that 3 of the parts are white, so that is our numerator (number of the top of the fraction).
Our final answer is 3/7 or "three-sevenths." Said another way, three of the seven pieces are white.
Step-by-step explanation:
from an observer o, the angles of elevation of the bottom and the top of a flagpole are 40° and 45° respectively.find the height of the flagpole?
Answer:
Take a look of the image below, we can think on this problem as a problem of two triangle rectangles.
We can see that both triangles share the adjacent cathetus, then the height of the flagpole is just the difference between the opposite cathetus.
Remember the relation:
Tan(a) = (opposite cathetus)/(adjacent cathetus)
So, if we define H as the height of the cliff
X as the distance between the observer and the cliff
and h as the height of the flagopole
we can write:
tan(40°) = H/X
tan(45°) = (H + h)/X
Notice that we have two equations and 3 variables (we should have the same number of equations than variables) then here is missing information, and we can't get an exact solution for the height of the flagpole.
But we can write it in terms of the height of the cliff H, or in terms of the distance between the observer and the cliff.
We want to find the value of h.
If we take the quotient between both equations, we get:
Tan(45°)/Tan(40°) = (H + h)/H
1.192 = (H + h)/H
1.192*H = H + h
1.192*H - H = h
0.192*H = h
So the height of the flagpole is 0.192 times the height of the cliff.
A study of the pay of corporate chief executive officers (CEOs) examined the increase in cash compensation of the CEOs of 104 companies, adjusted for inflation, in a recent year. The mean increase in real compensation was x¯=6.9%, and the standard deviation of the increases was s=55%. Is this good evidence that the mean real compensation μ of all CEOs increased that year? The hypotheses are
Answer:
The p-value of the test is 0.1017, which is greater than the standard significance level of 0.05, which means that this is not good evidence that the mean real compensation μ of all CEOs increased that year.
Step-by-step explanation:
At the null hypothesis, we test if there was no increase, that is, the mean is 0, so:
[tex]H_0: \mu = 0[/tex]
At the alternative hypothesis, we test if there was an increase, that is, the mean is greater than 0, so:
[tex]H_1: \mu > 0[/tex]
The test statistic is:
[tex]t = \frac{X - \mu}{\frac{s}{\sqrt{n}}}[/tex]
In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, s is the standard deviation and n is the size of the sample.
0 is tested at the null hypothesis:
This means that [tex]\mu = 0[/tex]
104 companies, adjusted for inflation, in a recent year. The mean increase in real compensation was x¯=6.9%, and the standard deviation of the increases was s=55%.
This means that [tex]n = 104, X = 6.9, s = 55[/tex]
Value of the test-statistic:
[tex]t = \frac{X - \mu}{\frac{s}{\sqrt{n}}}[/tex]
[tex]t = \frac{6.9 - 0}{\frac{55}{\sqrt{104}}}[/tex]
[tex]t = 1.28[/tex]
P-value of the test:
The p-value of the test is a right-tailed test(test if the mean is greater than a value), with 104 - 1 = 103 df and t = 1.28.
Using a t-distribution calculator, this p-value is of 0.1017.
The p-value of the test is 0.1017, which is greater than the standard significance level of 0.05, which means that this is not good evidence that the mean real compensation μ of all CEOs increased that year.
Please help Quick this is hard so you’ll get brainliest thank you so much
Answer:
number 1: no
number 2: no
number 3: no
in the diagram below, BD is parallel to XY. what is the value of y?
a. 70
b. 130
c. 110
d. 20
I can't see the diagram sorry.
Step-by-step explanation:
Is there supposed to be a picture attached?
Find the first derivative for y = f(x). fox ) 3x² -5x-1 at a Pocat where a = 4
Answer:
Step-by-step explanation:
f(x) = 3x² -5x - 1
f'(x) =2*3x - 5*1 +0
= 6x - 5
f'(4) = 6*4 - 5
= 24 - 5
= 19
Which figure can be formed from the net?
pls answer fast for brainiest !
Answer:
It should be the top right one
(with 6ft as the height)
Step-by-step explanation:
Answer:
It must be the lower to the left choice.
Step-by-step explanation:
As you can see, the net we have is composed of only triangles.
So we should be choosing a figure with a triangular base.
Our answers are narrowed down into the top right and lower left choices because both figures have triangular bases.
The other person down there chose the top right choice and was incorrect, so the answer should be the lower to the left figure.
Also, its the lower left figure because look at the triangular base, it is an isosceles meaning that two sides have the same length.
If the net says that the long side measures 9 ft, then the other two sides should be the same length and shorter than 9 ft. So the answer is the lower left figure.
Hope this helps
Paul writes newspaper articles. He earns a base rate of $500 per month and an additional $100 per article he writes. Last month he earned $2000.
Write an equation to determine the number of articles (a) he sold last month.
Answer:
Total earning last month with x articles is:
x*100 + 500This is same amount as 2000
The equation is:
100x + 500 = 2000Please help
Find the value of x,
m∠5 = x-6, m∠4 = 2x+4, m∠2 = 2x-26
9514 1404 393
Answer:
x = 30 2/3
Step-by-step explanation:
Angles 4 and 5 are complementary, so we have ...
m∠4 +m∠5 = 90°
(2x +4) +(x -6) = 90
3x -2 = 90 . . . . . . . . . collect terms
3x = 92 . . . . . . . . . . add 2; next, divide by 3
x = 92/3 = 30 2/3
translate to a system of equations but do not solve.
A non-toxic floor wax can be made from lemon juice and food grade linseed oil. The amount of oil should be twice the amount of lemon juice. How much of each ingredient is needed to make 30 oz of floor wax?
let x represent the number of ounces of lemon juice and y represent the number of ounces of linseed oil.
complete the system of equations.
y =
x+y =
Answer:
x + y = 30
y = 2x
Step-by-step explanation:
x = number of ounces of lemon juice
y = number of ounces of linseed oil
How much of each ingredient is needed to make 30 oz of floor wax?
x + y = 30
The amount of oil should be twice the amount of lemon juice.
y = 2x
Answer:
x + y = 30
y = 2x
The graph of f(x)=x^2 is shown. Compare the graph of f(x) with the graph of d(x)=x^2-26
A es aaaaaaaaaaaaaaaaaaaaaaa
Assume that different groups of couples use a particular method of gender selection and each couple gives birth to one baby. This method is designed to increase the likelihood that each baby will be a girl, but assume that the method has no effect, so the probability of a girl is 0.5. Assume that the groups consist of 40 couples. Complete parts (a) through (c) below. a. Find the mean and the standard deviation for the numbers of girls in groups of 40 births. The value of the mean is μ
LOOK AT THE BOTTOM PLEASE BE RIGHT
Answer:
Translation
Step-by-step explanation:
A translation is when the triangle is moved around on the graph without it being reflected or changed in any way. I will be the same exact triangle, just with different coordinates.
Hope this helps!
Indicate the method you would use to prove the two 's . If no method applies, enter "none".
Answer:
AAS
Step-by-step explanation:
It will be angle angle side because you are given a side and two angles, and when you put them in the correct order, you will get AAS, or SAA (not the correct way to say it)
Using law of sines please show process and answer
Hello,
[tex]\widehat{A}=180^o-24.4^o-103.6^o=52^o\\\\\dfrac{sin(24.4^o)}{37.3} =\dfrac{sin(103.6^o)}{c} \\\\\\c=87.760246\approx{87.8}\\\\\\\dfrac{sin(52^o)}{a} =\dfrac{sin(24.4^o)}{37.3} \\\\\\a=71.1510189...\approx{71.2}\\[/tex]
Ms. Weaver plans to decorate the bulletin board in her classroom. She purchased 30 sheets of construction paper for $0.30 per sheet, 5 boxes of thumbtacks for $0.70 per box, and 4 framed pictures for $6.00 per picture. How much money did Ms. Weaver spend for the items?
Answer:
$36.5 money ms.weaver spent for the items
A piece of wood is cut into three pieces in the ratio 6: 5: 2. If the log is 61/2 feet long, what will be the length of the longest piece
Answer:
14.077 feet to the nearest thousandth.
Step-by-step explanation:
First let's work out the multiplier:
6 + 5 + 2 = 13.
61/2 = 30.5
- so the multiplier is 30.5/13 = 2.34615
The longest piece refers to the 6 in the ratio its length
= 6 * 2.34615
= 14.0769 ft.
Find m angle RQH if m angle HQP=95^ and m angle RQP=152^
Answer:
[tex] \large{ \tt{❁ \: S \: O \: L \: U \: T \: I \: O \: N : }}[/tex]
[tex] \large{ \tt{✽ \: m \: \angle \: RQP = m \: \angle \: RQH + m \: \angle \: HQP}}[/tex]
[tex] \large{ \tt{⇾ \: 152 \degree = \: m \: \angle \: \: RQH + 95 \degree}}[/tex]
[tex] \large{ \tt{⇾ \: 152 \degree - 95 \degree = m \: \angle \: RQH}}[/tex]
[tex] \boxed{ \large{ \tt{⇾ \: 57 \degree = m \: \angle \: RQH}}}[/tex]
Our final answer : 57° . Hope I helped! Let me know if you have any questions regarding my answer! :)▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
Mrs. Taylor is planning a pizza party for her students. She plans to purchase cheese pizza and pepperoni pizza for her students to enjoy. Cheese pizzas cost $8 each and pepperoni pizzas cost $11 each. She needs to purchase at least 12 pizzas, while spending no more than $180.
What are two combinations of cheese and pepperoni pizzas that Mrs. Taylor can purchase without exceeding her spending limit?
Let x represent the number of cheese pizzas purchased and y represent the number of pepperoni pizzas purchased.
Answer:
Step-by-step explanation:
She needs 12 pizzas
x + y = 12
She also can't spend more than 180 dollars.
8x + 11y < 180 She can get all 12 pizzas and have the bill come to 132 dollars
11 * 12 = 132
She could really be kind to her pocket book and get all cheese pizzas
8*12 = 96 which saves her 36 dollars.
So any number of either kind will do.
(0,12) = 132
(1,11) = 8*1 + 11*11 = 129
and so on down the line
The height and base radius of a cone are increased by a factor of 2 to create a similar cone. How is the slant height of the cone affected? The slant height of the larger cone is equal to the slant height of the smaller cone. The slant height of the larger cone is double the slant height of the smaller cone. The slant height of the larger cone is 4 times the slant height of the smaller cone. The slant height of the larger cone is 8 times the slant height of the smaller cone.
Answer:
The slant height of the cone affected is two times the slant height of original cone
Step-by-step explanation:
we know that
If the height and base radius of a cone are increased by a factor of to create a similar cone
then
the scale factor is equal to
therefore
the slant height of the cone affected is equal to the slant height of the original cone multiplied by the scale factor
Find the slant height of the original cone
Let
l-----> slant height of original cone
la-----> slant height of the cone affected
Applying the Pythagoras theorem
so
The slant height of the cone affected is two times the slant height of original cone
(I GOT THIS FROM SOMEONE ELSES ANSWER IN 2017 SO I HOPE THIS HELPS)
The slant height of the larger cone is double the slant height of the smaller cone.
Option B is the correct answer.
What is a cone?It is a shape of a Christmas tree where there is a base of radius r and a top point called the apex.
The volume of a cone is 1/3 πr²h
We have,
The slant height of the cone is affected by a factor of 2.
When the height and base radius of a cone are multiplied by 2, the dimensions of the new cone are doubled.
Therefore,
The slant height of the larger cone is double the slant height of the smaller cone.
Learn more about cones here:
https://brainly.com/question/13798146
#SPJ5
Two different types of injection-molding machines are used to form plastic parts. Two random samples, each of size 300, are selected. 15 defective parts are found in the sample from machine 1 and 8 defective parts are found in the sample from machine 2. Is it reasonable to assume that both machines have the same defective rate
Answer:
No it is not since there is 15 defectice parts in 2machines and there is 8 broken parts in the one machine
Hope This Helps!!!
Think of 5 positive integers that have a mode of 5 and 6, a median of 6 and a mean of 7.
Answer:
5,5,6,6,13
Step-by-step explanation:
Mode means most often. The 5 numbers has 2 modes 5 and 6
This means that 4 of the numbers must be 5,5,6,6
Median means the middle number must be 6
5,5,6,6,x is the only way to to get the middle number to be 6
We need to average to 7
(5+5+6+6+x) /5 = 7
(5+5+6+6+x) /5 *5= 7*5
(5+5+6+6+x) =35
22+x = 35
x = 35-22
x = 13
The other number is 13
Exam grades: Scores on a statistics final in a large class were normally distributed with a mean of 75 and a standard deviation of 9. Use the TI-84 PLUS calculator to answer the following. Round the answers to at least two decimals. (a) Find the 41st percentile of the scores. (b) Find the 74th percentile of the scores. (c) The instructor wants to give an A to the students whose scores were in the top 8% of the class. What is the minimum score needed to get an A
Solution :
Using the TI-84 PLUS calculator
a). Area : 0.41
μ = 75
σ = 9
InvNorm(0.41,75,9)
= 72.95209525
Therefore, the 41st percentile of the scores is 72.95209525
b). Area : 0.74
μ = 75
σ = 9
InvNorm(0.74,75,9)
= 80.79010862
Therefore, the 74st percentile of the scores is 80.79010862
c). 8%
So, Area : 0.92
μ = 75
σ = 9
InvNorm(0.92,75,9)
= 87.64564405
Therefore, X = 80.79010862
[tex]5.5=2\pi \sqrt{\frac{L}{9.8}[/tex]
9514 1404 393
Answer:
7.51 m
Step-by-step explanation:
The equation matches that required for finding the length of a pendulum that has a period of 5.5 seconds. We can solve for L to find the length.
[tex]5.5=2\pi\sqrt{\dfrac{L}{9.8}}\\\\\dfrac{5.5}{2\pi}=\sqrt{\dfrac{L}{9.8}}\\\\\left(\dfrac{5.5}{2\pi}\right)^2=\dfrac{L}{9.8}\\\\L=74.1125/\pi^2\approx7.509[/tex]
The length of a pendulum with period 5.5 seconds is about 7.51 meters.
Answer:
The length, L = 7.52 m.
Step-by-step explanation:
The given expression is
[tex]5.5= 2 \pi \sqrt\frac{L}{9.8}\\\\Sqauring on both the sides\\\\5.5 \times 5.5 = 4\pi^2 \times \frac{L}{9.8}\\\\L = 7.52 m[/tex]
The value of length is 7.52 m.