[tex]a. $ x = 23^{\circ}\\b. $ m \angle ECH =28^{\circ}\\c. $ m\angle HCD = 62^{\circ}\\d. $ m \angle GCF = 28^{\circ}\\e. $ m \angle ECG = 152^{\circ}\\f. $ m \angle GCD = 118^{\circ}[/tex]
Given:
[tex]m \angle ECH = x + 5\\m \angle HCD = 3x - 7[/tex]
Note the following:
Since CD is perpendicular to EF, therefore:
[tex]m \angle ECD = 90^{\circ}\\m \angle FCD = 90^{\circ}[/tex]
Thus:
a. Find x
[tex]m \angle ECH + m \angle HCD = m \angle ECD[/tex]
Substitute
[tex](x + 5) + (3x - 7) = 90[/tex]
Add like terms
[tex]x + 5 +3x - 7 = 90\\4x -2 = 90\\4x = 90 + 2\\4x = 92[/tex]
Divide both sides by 4
[tex]x = 23[/tex]
b. Find [tex]m \angle ECH[/tex]
[tex]m \angle ECH = x + 5[/tex]
Plug in the value of x
[tex]m \angle ECH = 23+ 5\\m \angle ECH =28^{\circ}[/tex]
c. Find [tex]m \angle HCD[/tex]
[tex]m \angle HCD = 3x - 7\\m \angle HCD = 3(23) - 7\\m \angle HCD = 62^{\circ}[/tex]
d. Find [tex]m \angle GCF[/tex]
[tex]m \angle GCF = m \angle ECH[/tex] (vertical angles are congruent)
Substitute
[tex]m \angle GCF = 28^{\circ}[/tex]
e. Find [tex]m \angle ECG[/tex]
[tex]m \angle ECG = 180 - m \angle GCF[/tex] (angles on a straight line)
Substitute
[tex]m \angle ECG = 180 - 28\\m \angle ECG = 152^{\circ}[/tex]
f. Find [tex]m \angle GCD[/tex]
[tex]m \angle GCD = m\angle FCD + m \angle GCF[/tex]
Substitute
[tex]m \angle GCD = 90 + 28\\m \angle GCD = 118^{\circ}[/tex]
Therefore:
[tex]a. $ x = 23^{\circ}\\b. $ m \angle ECH =28^{\circ}\\c. $ m\angle HCD = 62^{\circ}\\d. $ m \angle GCF = 28^{\circ}\\e. $ m \angle ECG = 152^{\circ}\\f. $ m \angle GCD = 118^{\circ}[/tex]
Learn more here:
https://brainly.com/question/18292462
AB = 3.2 cm
BC= 8.4 cm
The area of triangle ABC is 10 cm²
Calculate the perimeter of triangle ABC.
Give your answer correct to three significant figures.
Answer:
Therefore, perimeter of the given triangle is 18.300 cm.
Step-by-step explanation:
Area of the triangle ABC = [tex]\frac{1}{2}(\text{AB})(\text{BC})(\text{SinB})[/tex]
10 = [tex]\frac{1}{2}(3.2)(8.4)(\text{SinB})[/tex]
Sin(B) = [tex]\frac{10}{3.2\times 4.2}[/tex]
B = [tex]\text{Sin}^{-1}(0.74405)[/tex]
B = 48.08°
By applying Cosine rule in the given triangle,
(AC)² = (AB)² + (BC)²-2(AB)(BC)CosB
(AC)² = (3.2)² + (8.4)² - 2(3.2)(8.4)Cos(48.08)°
(AC)² = 10.24 + 70.56 - 35.9166
(AC)² = 44.88
AC = [tex]\sqrt{44.8833}[/tex]
AC = 6.6995 cm
Perimeter of the ΔABC = m(AB) + m(BC) + m(AC)
= 3.200 + 8.400 + 6.6995
= 18.2995
≈ 18.300 cm
Therefore, perimeter of the given triangle is 18.300 cm
A group of students is arranging squares into layers to create a project. The first layer has 4 squares. The second layer has 8 squares. Which formula represents an arithmetic explicit formula to determine the number of squares in each layer?
Answer:
answer is d
Step-by-step explanation:
Determine the slope of a line which contains the points (2, 4) and (-6, 9). Write your answer in simplest form.
Answer:
-5/8
Step-by-step explanation:
(2,4) (-6.9)
m= y2-y1/x2-x1
= 9-4/-6-2
=5/-8
=-5/8
3x/4 - 5 = 10
I need help solving this equation someone please help
Answer:
x = 20
Step-by-step explanation:
Hello!
What we do to one side we have to do to the other
3x/4 - 5 = 10
Add 5 to both sides
3x/4 = 15
Multiply both sides by 4
3x = 60
Divide both sides by 3
x = 20
The answer is x = 20
Hope this helps!
Answer:
20
Step-by-step explanation:
3x/4 - 5 = 10
3x/4 = 10 + 5
3x/4 = 15
3x = 15 * 4
3x = 60
x = 60/3
x = 20
plz help ASAP! thank u
Answer: Choice B)
The relation is a function because there are no vertical lines that can be drawn on the graph that pass through more than one point.
This graph passes the vertical line test. Any input (x) leads to one and only one output (y). An example of a graph failing the vertical line test would be a graph that is a sideways parabola.
Which answer choice identifies the relevant information in the problem? Sarah left the house at 12:15 p.M. To go to the store. She spent $42.20 on 2 books for her children and she spent $5.67 on a toys for her dog, Rover. Sarah arrived home at 1:00 p.M. How much did Sarah spend on each book? A. She spent $42.20 on 2 books. B. She spent $42.20 and $5.67. C. She left the house at 12:15 p.M. And arrived home at 1:00 p.M. D. You need to know how many children she has to solve the problem.
Answer:
Answer choices A, B and C identifies the relevant information in the problem
Step-by-step explanation:
Sarah left the house at 12:15 pm
She spent $42.20 on two books for her children
She spent $5.67 on a toy for her dog
Sarah arrived home at 1:00 pm
How much did Sarah spent on each book?
If she spent $42.20 on two books for her children,
Then, it means she has two children and the book cost $21.10 each
Answer choices A, B and C identifies the relevant information in the problem
Answer:
its A all the other one dont make sence sorry if im wrong but i got it right on my test
Step-by-step explanation:
round your answer to the nearest hundredth. Find angle A=?
Answer:
A=48.81
Step-by-step explanation:
it is a right angle triangle find the hypotenuse c using Pythagorean theorem:
c²=a²+b²
c²=8²+7²
c=√64+49
c=10.63
sin A =opp/hyp
sin A=8/10.63
A= 48.81
another way :
tan A=opp/adj
tan A=8/7
A=48.81
write as an expression: a number that is equal to five less than b
Answer:
[tex]\huge\boxed{a = b-5}[/tex]
Step-by-step explanation:
Let the number be a
So, the given condition is:
a = b-5
Answer:
[tex]\Huge \boxed{a=b-5}[/tex]
Step-by-step explanation:
Let the number be [tex]a[/tex].
[tex]a[/tex] is equal to 5 less than [tex]b[/tex].
5 is subtracted from [tex]b[/tex].
Keisha, Felipe, and Manuel sent a total of 100 text messages during the weekend. Keisha sent 8 more messages than Felipe. Manuel sent 2 times as many
messages as Felipe. How many messages did they each send?
Answer:
Felipe = 23 messages
Keisha = 31 messages
Manuel = 46 messages
Step-by-step explanation:
Keisha = K
Felipe = F
Manuel = M
=> There are a total of 100 messages.
=> K sent 8 +F => K = 8 + F
=> M sent 2 * F => M = 2F
=> F = F
=> 8 + F + 2F + F = 100
=> 8 + 4F = 100
=> 8 - 8 +4F = 100 -8
=> 4F = 92
=> 4F/4 = 92/4
=> F = 23
So, Felipe = 23 messages.
Keisha = 8 + F = 8 + 23 = 31 messages.
Manuel = 2F = 2* 23 = 46 messages.
46 + 31 + 23 = 77 + 23 = 100 messages.
So, the answer is correct.
a red sea urchin grown its entire life, which can last 200 years. An urchin at age 30 has a diameter of 11.9 cm, while an urchin at age 110 has a diameter of 15.5 cm What is the average rate of change over this given period
A = (15.5 - 11.9) / (110 - 30) = 3.6 / 80 = 0.045
Average rate of change = 0.045 cm
The average rate of change of sea urchin's diameter with respect to its age is 0.0045 cm/yr.
What is Derivative in mathematics?
Derivative in mathematics represent the rate of change of a function with respect to a variable.
Given is a red sea urchin such that at age 30, the urchin has a diameter of 11.9 cm whereas urchin at age 110 has a diameter of 15.5 cm.
From the question we can write -
Initial age = A[1] = 30
Initial diameter = D[1] = 11.9 cm
Final Age = A[2] = 110
Final diameter = D[2] = 15.5 cm
Average rate [r] = D[2] - D[1] / A[2] - A[1]
r = D[2] - D[1] / A[2] - A[1]
r = 15.5 - 11.9/110 - 30
r = 3.6/80
r = 0.045
Therefore, the average rate of change of sea urchin's diameter with respect to its age is 0.0045 cm/yr.
To solve more questions on rate measurements, visit the link below-
https://brainly.com/question/11965077
#SPJ2
Caculate the value of x on the figure below
Answer:
x = 58
Step-by-step explanation:
The angle at the centre is twice the angle at the circumference subtended by the same arc, thus
x + 62 = 2(x + 2)
x + 62 = 2x + 4 ( subtract x from both sides )
62 = x + 4 ( subtract 4 from both sides )
58 = x
what is the range and domian of y=(x-4)
Help, Answer ASAP; will give brainliest
Answer:
a = 2, b = 3
Step-by-step explanation:
The diagonals of a rectangle bisect each other, thus
5a² = 4a² + 4 ( subtract 4a² from both sides )
a² = 4 ( take the square root of both sides )
a = [tex]\sqrt{4}[/tex] = 2
Also
6b - 8 = 4b - 2 ( subtract 4b from both sides )
2b - 8 = - 2 ( add 8 to both sides )
2b = 6 ( divide both sides by 2 )
b = 3
line passing through points (-4,2) and (0,3)
Answer:
y-y1=m(x-x1)
or,y-2=1/4(x+4)
or,4y-8=x+4
or,x-4y+12=0 is the required equation.
Step-by-step explanation:
If it helps you, plz mark it as brainliest
andy is making floor plans for a tree house using a scale 1in to 2ft he wants to make the floor of the tree house have a length of 8ft. how many inches should he show for this distance on his floor plan
Answer:
Andy should represent the 8 feet long floor on the floor plan with a dimension of 4 inches
Step-by-step explanation:
The scale of the tree house plan is given as 1 in. to 2 ft,
Therefore we have a scale of 1/2 in. of the floor plane is equivalent to 1 ft. in actual dimensions
Given that Andy wants the floor to make the tree house floor to have a length of 8 ft., let the dimension of the floor plan of the house floor be x, we have;
[tex]\dfrac{\frac{1}{2} \ inches \ plan }{1 \ feet \ actual} =\dfrac{x \ inches \ plan}{8 \ feet \ actual}[/tex]
[tex]x \ inches \ plan =\dfrac{\frac{1}{2} \ inches \ plan }{1 \ feet \ actual} \times 8 \ feet \ actual = 4 \ inches[/tex]
Therefore, Andy should represent the 8 feet long floor on the floor plan with a dimension of 4 inches.
The radius of the circle is increasing at a rate of 1 meter per day and the sides of the square are increasing at a rate of 3 meters per day. When the radius is 3 meters, and the sides are 20 meters, then how fast is the AREA outside the circle but inside the square changing
Answer:
The area inside the square and outside the circle is changing at a rate of 101.150 square meters per day.
Step-by-step explanation:
According to the statement of the problem, the circle is inside the square and the area inside the square but outside the circle, measured in square meters, is represented by the following formula. It is worth to notice that radius ([tex]r[/tex]) is less than side ([tex]l[/tex]), both measured in meters:
[tex]A_{T} = A_{\square} -A_{\circ}[/tex]
[tex]A_{T} = l^{2}-\pi\cdot r^{2}[/tex]
Now, the rate of change of the total area is calculated after deriving previous expression in time:
[tex]\frac{dA_{T}}{dt} = 2\cdot l\cdot \frac{dl}{dt} -2\pi\cdot r\cdot \frac{dr}{dt}[/tex]
Where [tex]\frac{dl}{dt}[/tex] and [tex]\frac{dr}{dt}[/tex] are the rates of change of side and radius, measured in meters per day.
Given that [tex]l = 20\,m[/tex], [tex]r = 3\,m[/tex], [tex]\frac{dl}{dt} = 3\,\frac{m}{day}[/tex] and [tex]\frac{dr}{dt} = 1\,\frac{m}{day}[/tex], the rate of change of the total area is:
[tex]\frac{dA_{T}}{dt} = 2\cdot (20\,m)\cdot \left(3\,\frac{m}{day} \right)-2\pi\cdot (3\,m)\cdot \left(1\,\frac{m}{day} \right)[/tex]
[tex]\frac{dA_{T}}{dt} \approx 101.150\,\frac{m^{2}}{day}[/tex]
The area inside the square and outside the circle is changing at a rate of 101.150 square meters per day.
Rosemary walks each week for exercise. Let d represent the distance walked and h represent the number of hours spent walking Last weekwalked 18 miles in 6 hours This week d = 2.5h Which statement must be true?
THIS IS THE COMPLETE QUESTION BELOW;
Rosemary walks each week for exercise. Let d represent the distance walked and h represent the number of hours spent walking.
Last week: walked 18 miles in 6 hours
This week: d = 2.5h
Which statement must be true?
A.This week, she walked a greater distance.
B. Last week, she walked a greater distance
C. This week, she walked at a faster pace.
D. Last week, she walked at a faster pace
Answer
OPTION B is correct
B)Last week, she walked a greater distance
Step-by-step explanation:
We were told Rosemary walks each week for exercise.
From the question,
✓d represented the distance walked
✓h represent the number of hours spent walking.
A)Last week: she walked 18 miles in 6 hours
Then, if she walks 18 miles in 6 hours, we can be expressed as (18miles/6hour)
= 3 miles per hour
B)This week: d = 2.5h
This implies that she she walked 2.5 miles per hour this week since the distance is expressed in miles and time in hours.
So we can conclude that last week she walked 3 miles per hour which is more greater than 2.5 miles per hour which she walks this week.
Therefore, OPTION B is correct, (Last week, she walked a greater distance)
Answer:
It's b
Step-by-step explanation:
Find the slope and Y-Intercept of the line. 6X plus 2Y equals -88
Answer:
That’s ez pz
Step-by-step explanation:
Answer:
The slope is -3 and the y intercept is -44
Step-by-step explanation:
6X+ 2Y= -88
The slope intercept form of a line is y= mx+b where m is the slope and b is the y intercept
Solve for y
6X-6x+ 2Y= -88-6x
2y = -6x-88
Divide by 2
y = -3x -44
The slope is -3 and the y intercept is -44
A finite geometric series is the sum of a sequence of numbers. Take the sequence 1, 2, 4, 8, … , for example. Notice that each number is twice the value of the previous number. So, a number in the sequence can be represented by the function f(n) = 2n–1. One way to write the sum of the sequence through the 5th number in the sequence is ∑5n-12n-1. This equation can also be written as S5 = 20 + 21 + 22 + 23 + 24. If we multiply this equation by 2, the equation becomes 2(S5) = 21 + 22 + 23 + 24 + 25. What happens if you subtract the two equations and solve for S5? Can you use this information to come up with a way to find any geometric series Sn in the form ∑an-1bn-1?
hope this helps you alot
Solve (s)(-3st)(-1/3)
Answer:
Step-by-step explanation
The area of a trapezium is 105cm² and its height is 7 cm. If one of the parallel sides is longer than the other by 6cm, find the lengths of two parallel sides.
Answer:
Step-by-step explanation:
The winning times (in seconds) in a speed-skating event for men can be represented by the formula T = 46.97 - 0.099x, where x represents the year, with x = 0 corresponding to 1920. (For example in 1992, x would be 1992 - 1920 = 72.) According to the formula, what was the winning time in 1997? Round to the nearest hundredth. * 1 point 40.34 sec 39.35 sec 3609.07 sec 41.33 sec
Answer:
39.35 sec
Step-by-step explanation:
Given that:
The winning time is represented by the function:
T = 46.97 - 0.099x
Where x = year ; x = 0 corresponding to 1920
According to the formula, what was the winning time in 1997?
first find the value of x;
x = 1997 - 1920 = 77 years
Nowing plugging the value of x in the function :
T = 46.97 - 0.099(77)
T = 46.97 - 7.623
T = 39.347 seconds
T = 39.35 s
Please please please please help
Answer:
[tex]x^2 +4x +3 [/tex]
Step-by-step explanation:
f(x)=x²-1
g(x)= x+2
f(g(x)) =f(x+2)
=(x+2)²-1
=x²+4x+4-1
=x²+4x+3
Please answer answer question
Answer:
The correct answer is
Step-by-step explanation:
11 square centimeters.
Hope this helps....
Have a nice day!!!!
Between which two integers on a number line does -√120 lie on?
Answer:
-11 and -10
Step-by-step explanation:
● -√120 = -1 × √120
● -√120 = -1 × 2√30
● 30 is close to 25 so √30 is close to five but greater than it.
Multiplying 5 by -2 gives -10
Multipluing √30 by -2 gives you a number that is close to -10 but smaller than it.
So -√120 lies between -11 and -10
DUE NOW PLEASE HELP!!!
Factor completely x2 − 10x + 25.
(x − 5)(x − 5)
(x + 5)(x + 5)
(x + 5)(x − 5)
(x − 25)(x − 1)
Answer:
(x - 5)(x - 5)
Step-by-step explanation:
[tex] {x}^{2} - 10x + 25 \: is \: the \: expansion \\ of \: {(x - 5)}^{2} \\ {(x - 5)}^{2} = (x - 5)(x - 5)[/tex]
The complete factorization of the quadratic expression x² - 10x + 25 is (x - 5)(x - 5). Hence the first option is the right choice.
How to factor a quadratic expression?A quadratic expression of the form ax² + bx + c is factored by using the mid-term factorization method, which suggests that b should be broken in such two components that their product = ac. After this, we can factorize using the grouping method.
How to solve the given question?In the question, we are asked to factor the quadratic expression x² - 10x + 25 completely.
Comparing x² - 10x + 25 to ax² + bx + c, we get a = 1, b = -10, and c = 25.
To factor the expression we will use the mid-term factorization method, and try to break b in such two numbers whose product = ac.
Now, ac = 1 * 25 = 25. b = -10, which can be broken as -5, and -5.
Therefore, we can write the given expression as:
x² - 10x + 25
= x² - 5x - 5x + 25, mid-term factorization
= x(x - 5) -5(x - 5), grouping
= (x - 5)(x - 5), grouping.
Therefore, the complete factorization of the quadratic expression x² - 10x + 25 is (x - 5)(x - 5). Hence the first option is the right choice.
Learn more about mid-term factorization at
https://brainly.com/question/25829061
#SPJ2
We can calculate EEE, the amount of euros that has the same value as DDD U.S. Dollars, using the equation E=\dfrac{17}{20}DE= 20 17 DE, equals, start fraction, 17, divided by, 20, end fraction, D. How many euros have the same value as 111 U.S. Dollar? euros How many U.S. Dollars have the same value as 111 euro? dollars
Answer: 1 U.S.dollar = 0.85 euro.
1 euro = 1.18 dollars.
Step-by-step explanation:
The given equation: [tex]E=\dfrac{17}{20}D[/tex]
, where 'E' is the amount of euros that has the same value as 'D' U.S. Dollars.
At D= 1,
[tex]E=\dfrac{17}{20}=0.85\text{ euro}[/tex]
i.e. 1 U.S.dollar = 0.85 euro.
At E= 1 , we have
[tex]1=\dfrac{17}{20}D\\\\\Rightarrow\ D= 20/17\approx1.18\text{ dollars}[/tex]
Hence, 1 euro = 1.18 dollars.
Jeania's parents have given her a interest-free loan of $100 to buy a new pair of running shoes She has to
pay back the loan with monthly payments of $20 each.
Write a function rule for the balance of the function (p), where p represents the number of
payments Jeania has made.
Answer:
The balance on the loan f(p) = $100 - $20 × p
Step-by-step explanation:
The parameters of the question are;
The loan amount = $100
The amount of monthly payment for the loan = $20
The function rule for the balance of the function f(p) where p is the number of payments is given as follows;
The balance on the loan, f(p) = The loan amount less the total amount paid
The total amount payment Jeania has made = Amount of monthly payment × Number of months paid, p
The total amount payment Jeania has made = $20 × p
∴ The balance on the loan, f(p) = $100 - $20 × p
Which gives;
f(p) = $100 - $20 × p.
Rejoice bought 600 oranges at 5 for GH¢3.00 to be sold at the market. On her arrival 5% of the oranges got rotten and she sold the rest at one for GH¢1.00...
I) How any oranges did she finally sell?
ii) Find her loss or profit percent.
Answer:
She finally sold 570 oranges
Profit %= 58.33%
Step-by-step explanation:
Quantity bought=600
Price=5 for GH¢3.00
Total cost price=600/5 * GH¢3.00
=120*GH¢3.00
=GH¢360.00
5% of 600 oranges got rotten
=5/100*600
=30 Oranges were rotten
I) How any oranges did she finally sell?
She finally sold
Sold oranges= Total oranges - Rotten oranges
=600-30
=570 oranges
Selling price=GH¢1.00 * 570 oranges
=GH¢570.00
ii) Find her loss or profit percent
Profit or loss percent= Selling price - cost price / cost price * 100
% profit or loss=S.P - C.P / C.P * 100
=GH¢570.00 - GH¢360.00 / GH¢360.00 * 100
=GH¢210.00/GH¢360.00 *100
=0.5833 * 100
=58.33% profit
URGENT PLS HELP ASAP! THANK YOU :)
Answer:
box 1 and box2 are correct.