Answer:
[tex]V_{Na_2S}=368mL[/tex]
[tex]m_{Al_2S_3}=67.3gAl_2S_3[/tex]
Explanation:
Hello there!
In this case, according to the given information, it is possible to realize that the only way for us to calculate the required volume of sodium sulfide, is by calculating the moles of this substance consumed 163 mL of 2.75 mol/L aluminum sulfate by using the definition of molar concentration and the 1:3 mole ratio between these two:
[tex]n_{Na_2S}=0.163L*2.75\frac{molAl_2(SO_4)_3}{L}*\frac{3molNa_2S}{1molAl_2(SO_4)_3} =1.34molNa_2S[/tex]
Now, we divide these moles by the molar concentration of sodium sulfide to obtain the required volume:
[tex]V_{Na_2S}=\frac{1.34molNa_2S}{3.65mol/L} =0.368L=368mL[/tex]
For the last part, we now use the 1:1 mole ratio of aluminum sulfate to aluminum sulfide and the molar mass of the latter (150.158 g/mol) in order to calculate the required mass:
[tex]m_{Al_2S_3}=0.163L*2.75\frac{molAl_2(SO_4)_3}{L}*\frac{1molAl_2S_3}{1molAl_2(SO_4)_3} *\frac{150.158gAl_2S_3}{1molAl_2S_3} \\\\m_{Al_2S_3}=67.3gAl_2S_3[/tex]
Regards!
The compound sodium hydrogen sulfate is a strong electrolyte. Write the reaction when solid sodium hydrogen sulfate is put into water:
Answer:
NaHSO₄(s) --H₂O--> Na⁺(aq) + HSO₄⁻(aq)
Explanation:
Sodium hydrogen sulfate is a strong electrolyte, that is, when dissolved in water it completely dissociates into the cation sodium and the anion hydrogen sulfate. The corresponding chemical equation is:
NaHSO₄(s) --H₂O--> Na⁺(aq) + HSO₄⁻(aq)
20ml of water is mixed with 40gm of fine powder. Calculate the concentration of the solution obtained.
Answer:
[tex]\%m=66.7\%[/tex]
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to calculate the concentration of the solution obtained, by knowing 20 mL of water are the same to 20 g and therefore the mass of the solution is 40g+20g=60g.
Next, we apply the following equation to obtain the required concentration:
[tex]\%m=\frac{40g}{60g} *100\%\\\\\%m=66.7\%[/tex]
Regards!
4) The initial rate of the reaction between substances P and Q was measured in a series of
experiments and the following rate equation was deduced.
rate = k[P]?[Q]
Complete the table of data below for the reaction between P and Q
*Help asap please*
Answer:
The initial rate of the reaction between substances P and Q was measured in a series of
experiments and the following rate equation was deduced.
[tex]rate = k[P]^{2} [Q][/tex]
Complete the table of data below for the reaction between P and Q
Explanation:
Given rate of the reaction is:
[tex]rate= k[P]^{2} [Q]\\=>[Q]=\frac{rate}{k.[P]^{2} } \\and \\\\\\\ [P]=\sqrt{\frac{rate}{k.[Q]} }[/tex]
Substitute the given values in this formulae to get the [P], [Q] and rate values.
From the first row,
the value of k can be calulated:
[tex]k=\frac{rate}{[P]^{2}[Q] } \\ =\frac{4.8*10^-3}{(0.2)^{2} 2. (0.30)} \\ =0.4[/tex]
Second row:
2. Rate value:
[tex]rate =0.4* (0.10)^{2} * (0.10)\\\\ =4.0*10^-3mol.dm^-3.s^-1[/tex]
3.Third row:
[tex][Q]=\frac{rate}{k.[P]^{2} } \\ =9.6*10^-3 / (0.4 *(0.40)^{2} \\ =0.15mol.dm^{-3}[/tex]
4. Fourth row:
[tex][P]=\sqrt{\frac{rate}{k.[Q]} }\\=>[P]=\sqrt{\frac{19.2*10^-3}{0.60*0.4} } \\=>[P]=0.283mol.dm^{-3}[/tex]
You dissolve 14 g of Mg(NO3)2 in water and dilute to
750 mL. What is the molarity of this solution?
Answer:
0.127M
Explanation:
Molarity of a solution = number of moles (n) ÷ volume (V)
Molar mass of Mg(NO3)2 = 24 + (14 + 16(3)}2
= 24 + {14 + 48}2
= 24 + 124
= 148g/mol
Using the formula, mole = mass/molar mass, to convert mass of Mg(NO3)2 to mole
mole = 14g ÷ 148g/mol
mole = 0.095mol
Volume = 750mL = 750/1000 = 0.75L
Molarity = 0.095mol ÷ 0.75L
Molarity = 0.127M
Phosphine, PH3, a reactive and poisonous compound, reacts with oxygen as follows: 4PH3(g) 8O2(g) - P4O10(s) 6H2O(g) If you need to make 6.5 moles of P4O10, how many moles of PH3 is required for the reaction
Answer: 26 moles of [tex]PH_3[/tex] are required for the reaction.
Explanation:
We are given:
Moles of [tex]P_4O_{10}[/tex] = 6.5 moles
The given chemical reaction follows:
[tex]4PH_3(g)+8O_2(g)\rightarrow P_4O_{10}(s)+6H_2O(g)[/tex]
By the stoichiometry of the reaction:
If 1 mole of [tex]P_4O_{10}[/tex] is produced by 4 moles of [tex]PH_3[/tex]
So, 6.5 moles of [tex]P_4O_{10}[/tex] will be produced by = [tex]\frac{4}{1}\times 6.5=26mol[/tex] of [tex]PH_3[/tex]
Hence, 26 moles of [tex]PH_3[/tex] are required for the reaction.
Please help!!! I"m on a plato mastery test. If you give me an actual answer i will give you brainliest!!!
Identify an element on the periodic table that is chemically similar to boron (B).
The ones that are in red are the possible answers
Answer:
SI
Explanation:
I would say silicon because it is also another metalloid. Boron is a metalloid.
Please help me, it’s my last try
Answer:
Group 1A: alkali metals, or lithium family.
Group 2A: alkaline earth metals, or beryllium family.
Group 7A: the manganese family.
Group 8A: the iron family.
Explanation:
Answer:
1A: Alkali Metals
2A: Alkaline Earth Metals
7A: Halogens
8A: Noble Gases
The information below describes a redox reaction.
Ag+ (aq) + Al(s) — Ag(s) + Al3+ (aq)
Ag+ (aq) + -> Ag(s)
Al(s)->A3+ (aq) + 3e-
What is the coefficient of silver in the final, balanced equation for this reaction?
Answer:
Al°(s) + 3Ag⁺(aq) => Al⁺³(aq) + 3Ag(s)
Explanation:
Oxidation: Al°(s) => Al⁺³(aq) + 3e⁻
Reduction: 3Ag⁺(aq) + 3e⁻ => 3Ag°(s)
_________________________________________
Net Rxn: Al°(s) + 3Ag⁺(aq) => Al⁺³(aq) + 3Ag(s)
One mole of neutral aluminum atoms (Al°(s)) undergo oxidation delivering 3 moles of electrons to 3 moles silver ions (3Ag⁺³(aq)) that are reduced to 3 moles of neutral silver atoms (3Ag°(s)) in basic standard state 25°C; 1atm.
A balanced equation obeys the law of conservation of mass. According to the law of conservation of mass, mass can neither be created nor be destroyed. The coefficient of silver is 3.
What is a balanced equation?A balanced chemical equation can be defined as the chemical equation in which the number of reactants and products on both sides of the equation are equal. The amount of reactants and products on both sides of the equation will be equal in a balanced chemical equation.
The numbers which are used to balance the chemical equation are called the coefficients. The coefficients are the numbers which are added in front of the formula.
The balanced chemical equation for the given redox reaction is given as:
Al (s) + 3 Ag⁺ (aq) → Al³⁺ (aq) + 3Ag (s)
Thus the coefficient of silver is 3.
To know more about balanced equation, visit;
https://brainly.com/question/29769009
#SPJ7
Which of the following could not be a resonance structure of CH3NO2?
a)
H
H-C-NO
H
b)
H .0:
H-C-N
H
c)
H:03
H-C-NC2
H:06
d)
H
H-C=N
H :9-H
e) Both c and d
Answer:
the answer is b.CH3NO2 I guess I'm correct
Which of the following ionization energies indicates an atom is most likely to gain electrons and form an anion or not form an ion at all?
Group of answer choices
578 kJ/mol
9460 kJ/mol
496 kJ/mol
786 kJ/mol
Answer:
Explanation:
578kj/mol
g When aqueous solutions of and are mixed, a solid forms. Determine the mass of solid formed when 140.7 mL of 0.1000 M is mixed with an excess of an aqueous solution of .
The question is incomplete, the complete question is:
When aqueous solutions of NaCl and [tex]Pb(NO_3)_2[/tex] are mixed, a solid forms. Determine the mass of solid formed when 140.7 mL of 0.1000 M NaCl is mixed with an excess of an aqueous solution of
Answer: The mass of lead chloride produced is 1.96 g
Explanation:
Molarity is defined as the amount of solute expressed in the number of moles present per liter of solution. The units of molarity are mol/L. The formula used to calculate molarity:
[tex]\text{Molarity of solution}=\frac{\text{Moles of solute}\times 1000}{ \text{Volume of solution (mL)}}[/tex] .....(1)
Given values:
Molarity of NaCl = 0.1000 M
Volume of the solution = 140.7 mL
Putting values in equation 1, we get:
[tex]0.1000=\frac{\text{Moles of NaCl}\times 1000}{140.7}\\\\\text{Moles of NaCl}=\frac{0.1000\times 140.7}{1000}=0.01407mol[/tex]
The chemical equation for the reaction of NaCl and lead nitrate follows:
[tex]Pb(NO_3)_2(aq)+2NaCl(aq)\rightarrow PbCl_2(s)+2NaNO_3(aq)[/tex]
By the stoichiometry of the reaction:
If 2 moles of NaCl produces 1 mole of lead chloride
So, 0.01407 moles of NaCl will produce = [tex]\frac{1}{2}\times 0.01407=0.007035mol[/tex] of lead chloride
The number of moles is defined as the ratio of the mass of a substance to its molar mass.
The equation used is:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex] ......(2)
Molar mass of lead chloride = 278.1 g/mol
Plugging values in equation 2:
[tex]\text{Mass of lead chloride}=(0.007035mol\times 278.1g/mol)=1.96g[/tex]
Hence, the mass of lead chloride produced is 1.96 g
What are the laws and calculations governing gas behavior?
Answer:
Laws governing gas behavior.
Explanation:
Boyle's law:
It relates the pressure and volume of an ideal gas at a constant temperature.
According to this law:
"The volume of a fixed amount of gas at constant temperature is inversely proportional to its pressure".
[tex]P \alpha V[/tex].
Charle's law:
It relates the volume and absolute temperature of an ideal gas at a constant pressure.
According to this law:
"The volume of a fixed amount of gas at constant pressure is directly proportional to its absolute temperature".
[tex]V \alpha T[/tex].
Avogadro's law:
According to this law:
equal volumes of all gases under the same conditions of temperature and pressure contain, an equal number of moles.
[tex]V \alpha n[/tex].
Ideal gas equation:
By combining all the above-stated gas laws, this equation is formed as shown below:
[tex]V \alpha \frac{nT}{P} \\=> V= R. nT/ P\\=>PV=nRT[/tex]
R is called universal gas constant.
It has a value of 0.0821L.atm.mol-1.K-1.
Answer:
Boyle's law, Charle's law, Guy Lussac's law and Avogadro's law
Explanation:
All the gases behaves similarly when the environment conditions are normal. But when the physical condition changes like when the pressure, volume or temperature changes, the gas behaves differently and shows a deviation.
The number of gas laws are :
Boyle's Law
Boyle's law states that when the temperature remaining constant, the pressure of the gas varies inversely to the volume of the gas.
i.e. [tex]P \propto \frac{1}{V}[/tex]
Charle' law
Charle's law states that when pressure is constant, the temperature of a gas is directly proportional to the volume.
i.e. , [tex]$T \propto V$[/tex]
Gay Lussac's law
Gay - Lussa law states the volume and the mass of the pressure of the gas is directly proportional to the temperature of the gas.
i.e. P.T = constant
Avogadro's law
It states that under the conditions of same pressure as well as temperatures, the gases having equal volumes will have same numbers of molecules.
i.e. [tex]\frac{V_1}{n_1}=\frac{V_2}{n_2}[/tex] = constant
why is an alkaline substance dropped into lakes in some countries
Answer:
Lake Treatment
Explanation:
Sulphuric dioxide produced by industries and released into the atmosphere returns as acid rain or sulphuric acid. In lakes impacted by acid rain, such as in Ontario, Canada, the application of alkalis dropped by airplanes can control and neutralize the water's pH level.
In the reaction below, what is the limiting reactant when 1.24 moles NH3 of reacts with 1.79 moles of NO?
4NH_3 + 6NO (right arrow) 5N_2 + 6H_2O
1. NO
2. H_2O
3. NH_3
4. N_2
Answer:
Option 1. NO
Explanation:
The balanced equation for the reaction is given below below:
4NH₃ + 6NO —> 5N₂ + 6H₂O
From the balanced equation above,
4 moles of NH₃ reacted with 6 moles of NO.
Finally, we shall determine the limiting reactant. This can be obtained as follow:
From the balanced equation above,
4 moles of NH₃ reacted with 6 moles of NO.
Therefore, 1.24 moles of NH₃ will react with = (1.24 × 6)/4 = 1.86 moles of NO
From the calculation made above, we can see that a higher amount of NO (i.e 1.86 moles) than what was given (i.e 1.79 moles) is needed to react completely with 1.24 moles of NH₃.
Therefore, NO is the limiting reactant and NH₃ is the excess reactant.
Thus, the 1st option gives the correct answer to the question
Answer:
1. NO .
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to identify the limiting reactant by simply calculating the moles of any product, say N2, via the moles of each reactant and including the corresponding mole ratio (4:5 and 6:5):
[tex]1.24molNH_3*\frac{5molN_2}{4molNH_3}=1.55molN_2 \\\\1.79molNO*\frac{5molN_2}{6molNO}=1.50molN_2[/tex]
Thus, since NO yields the fewest moles of N2 product, we infer it is the limiting reactant.
Regards!
Which compound is insoluble in water?
Answer:
The answer is C... I am almost positive.
La función de la levadura en quimica
Explanation:
las levaduras son pequeños organismos unicelulares que se alimentan de azúcares simples y los descomponen en dióxido de carbono, alcohol (etanol, específicamente), moléculas de sabor y energía. El proceso se conoce como fermentación.
which of the following elements are more reactive than the others.
A. calcium (Ca)
B. Magnesium (Mg)
C. potassium (K)
D. Sodium (Na)
Answer: c potassium.
Explanation:
potassium is the most reactive metal among the given options.
D is absolutely wrong.
Consider the reaction between an alcohol and tosyl chloride, followed by a nucleophile. Write the condensed formula of the expected main organic product.
CH3CH2CH2OH---------- 2.CI 1.TsCl,pyridine__________
Answer:
Consider the reaction between an alcohol and tosyl chloride, followed by a nucleophile. Write the condensed formula of the expected main organic product.
CH3CH2CH2OH---------- 2.CI 1.TsCl,pyridine__________
Explanation:
Given alcohol is propanol.
When it reacts with TsCl, the hydrogen in -OH group is replaced with tosyl group.
Pyridine is a weak base and it neutralizes the HCl (acid) formed during the reaction.
The reaction is shown below:
Atoms are found to move from one lattice position to another at the rate of 300,000 jumps/s at 500 0C when the activation energy for their movement is 10,000 cal/mol. Calculate the jump rate at 400 0C.
Answer:
1
Explanation:
1
which type of chemical bond would be formed between two elements having electron configuration of 1s2 2s2 2p6 3s2 and 1s2 2s2 2p4
Classify each phrase according to whether it applies to photophosphorylation, oxidative phosphorylation, or both
Photophosphorylation Oxidative phosphorylation Both
1. occurs in plants produces ATP
2. occurs in chloroplasts
3. occurs in mitochondria
4. involves a larger electrical component
5. involves a smaller electrical component
6. involves a proton gradient
Answer:
1. Both
2. Phosphorylation
3. Both
4. Phosphorylation
5. Oxidative.
6. Both
Explanation:
Phosphorylation only occurs in chloroplast and it involves larger electrical component. Both Phosphorylation and oxidative occurs in mitochondria and it involves proton gradient. They occur in plants to produce ATP. Oxidative involves in smaller electrical component.
Photophosphorylation is a process that captures the solar energy from the sun to transform it into chemical energy. It occurs in the chloroplast of a plant cell.
What are photophosphorylation and oxidative phosphorylation?Photophosphorylation is a process of converting solar energy from the sun to ATP needed by plants and other organisms for cellular function and activity. This process takes place in the chloroplast of the plant cell and requires electrical components.
Oxidative Phosphorylation is the process of producing ATP with the help of oxygen and enzymes hence, occurs in aerobic cells. It does not need a larger electrical component.
Both phosphorylation and oxidative phosphorylation occurs in the mitochondria of plants cells and involves a proton gradient for the formation of ATP.
Therefore, oxidative phosphorylation option 5. involves a smaller electrical component, phosphorylation option 2. occurs in the chloroplast, and option 4. needs a larger electrical component.
Learn more about phosphorylation here:
https://brainly.com/question/1870229
which of the following illustrates a reversible change a cooking corn be rusting c frying egg and the boiling water
calculate the maximum theoretical percent recovery from the recrystallization of 1.00g of benzoic acid
Answer:
The maximum theoretical percent recovery from the recrystallization of 1.00 g of benzoic acid from 15 mL of water = 94.9%
Note: The question is incomplete. A similar but complete question is given below:
The solubility of benzoic acid in water is 6.80g per 100mL at 100 degrees C and 0.34 g per 100mL at 25 degrees C.
Calculate the maximum theoretical percent recovery from the recrystallization of 1.00 g of benzoic acid from 15 mL of water, assuming the solution is filtered at 25 degrees C.
Explanation:
Solubility of benzoic acid in water at 100 degrees C = 6.80g per 100mL
Solubility of benzoic acid in water at 25 degrees C = 0.34 g per 100mL
Mass of benzoic acid to be theoretically recovered from 100 mL of water = 6.80 g - 0.34 g = 6.46 g
At 25 degrees;
0.34 g of benzoic acid is present in 100 mL of water
x g of benzoic acid will be present in 15 mL of water
x = 0.34 × 15 / 100 = 0.051 g
Mass of benzoic acid to be theoretically recovered from 25 mL of water = 1.00 g - 0.051 g = 0.949 g
Maximum theoretical percent recovery = (mass recovered / original mass dissolved) x 100%
Maximum theoretical percent recovery = (0.949 / 1.00) × 100% = 94.9 %
Therefore, the maximum theoretical percent recovery from the recrystallization of 1.00 g of benzoic acid from 15 mL of water = 94.9%
Rocks are classified as igneous, metamorphic, or sedimentary according to
Answer:
D. the minerals they contain
Hope this answer is right!!
Of the below gases, which would deviate most from ideal gas behavior? CO O2 NH3 SF4
Answer:
For gases such as hydrogen, oxygen, nitrogen, helium, or neon, deviations from the ideal gas law are less than 0.1 percent at room temperature and atmospheric pressure. Other gases, such as carbon dioxide or ammonia, have stronger intermolecular forces and consequently greater deviation from ideality.
Explanation:
which of these molecules is nonpolar?
Answer:
option b is your right answer
If we have 1.23 mol of NaOH in solution and 0.85 mol of Cl2 gas is available to react, which one is the limiting reactant? Give your reason.
Answer:
NaOH is the limiting reactant.
Explanation:
Hello there!
In this case, since the reaction taking place between sodium hydroxide and chlorine has is:
[tex]NaOH+Cl_2\rightarrow NaCl+NaClO+H_2O[/tex]
Which must be balanced according to the law of conservation of mass:
[tex]2NaOH+Cl_2\rightarrow NaCl+NaClO+H_2O[/tex]
Whereas there is a 2:1 mole ratio of NaOH to Cl2, which means that the moles of the former that are consumed by 0.85 moles of the latter are:
[tex]n_{NaOH}=0.85molCl_2*\frac{2molNaOH}{1molCl_2}\\\\n_{ NaOH}=1.7molNaOH[/tex]
Therefore, since we just have 1.23 moles out of 1.70 moles of NaOH, we infer this is the limiting reactant.
Regards!
A pressure cooker contains 5.68 L of air at a temperature of 390 4K if the absolute pressure of the air in the pressure cooker is 205 Pa how many moles of air are in the cooker
Answer:
3.59x10⁻⁴ mol
Explanation:
Assuming ideal behaviour we can solve this problem by using the PV=nRT formula, where:
P = 205 PaV = 5.68 Ln = ?R = 8314.46 Pa·L·mol⁻¹·K⁻¹T = 390.4 KWe input the data given by the problem:
205 Pa * 5.68 L = n * 8314.46 Pa·L·mol⁻¹·K⁻¹ * 390.4 KAnd solve for n:
n = 3.59x10⁻⁴ mola polluted lake is 0.300 μg (micrograms) per liter of water, what is the total mass of mercury in the lake, in kilograms, if the lake has a surface area of 15.0 square miles and an average depth of 27.0 feet?
Answer:
95.9 kg
Explanation:
First we convert 15.0 mi² to m²:
15.0 mi² * ([tex]\frac{1609.34 m}{1mi}[/tex])² = 3.88x10⁷ m²Then we convert 27.0 ft to m:
27.0 ft * [tex]\frac{0.3048m}{1ft}[/tex] = 8.23 mNow we calculate the total volume of the lake:
3.88x10⁷ m² * 8.23 m = 3.20x10⁸ m³Converting 3.20x10⁸ m³ to L:
3.20x10⁸ m³ * [tex]\frac{1000L}{1m^3}[/tex] = 3.20x10¹¹ LNow we calculate the total mass of mercury in the lake, using the given concentration:
0.300 μg / L * 3.20x10¹¹ L = 9.59x10¹⁰ μgFinally we convert μg to kg:
9.59x10¹⁰ μg * [tex]\frac{1kg}{1x10^9ug}[/tex] = 95.9 kgHelppp
What do you need to know in order to find the mass of 3.00 moles of carbon?
Answer:
36g
Explanation:
you need to know the equation mass=moles*mr (in this case mr of carbon which is 12)
so 3*12=36g
hope this helps :)