1+3^2⋅2−5 order of operations

Answers

Answer 1
The order for operations:

()
^
* /
+ -

So,
1+3^2*2-5 =
1+((3^2)*2)-5 =
1+(9*2)-5 =
1+18-5 =
14
Answer 2

Answer:

Below

Step-by-step explanation:

● 1 + 3^2 × 2 -5

Start by calculating 3^2 wich is 9

● 1 + 9 × 2 -5

Multiply 2 by 9 (9×2=18)

● 1 + 18 -5

Add 1 to 18 (1+18 = 19)

● 19 -5

Substract 5 from 19 (19-5 = 14 )

● 14


Related Questions

In the following equation, when x=3, what is the value of y? -4x + 3y = 12 A. 9 B. 3 C. 0 D. 8 PLZ HURRY IM TIMED WILL MARK BRAINLIEST

Answers

Answer:

[tex]\huge\boxed{y = 8}[/tex]

Step-by-step explanation:

-4x + 3y = 12

Given that x = 3

-4 (3) + 3y = 12

-12 + 3y = 12

Adding 12 to both sides

3y = 12+12

3y = 24

Dividing both sides by 3

y = 8

Answer:

y =8

Step-by-step explanation:

-4x + 3y = 12

Let x = 3

-4(3) +3y = 12

-12+3y = 12

Add 12 to each side

-12+12+3y =12+12

3y =24

Divide each side by 3

3y/3 = 24/3

y =8

Solve the following equation using the square root property.
9x2 + 10 = 5

Answers

Answer: -5/81

Solving Steps:

9x^2+10=5
Simplify- 81x+10=5
Subtract 10 from both sides- 81x +10 -10= 5 -10
Simplify- 81x= -5
Divide both sides by 81- 81x/81= -5/81
Simplify- X= -5/81

How do i do this equation
-3(-2y-4)-5y-2=

Answers

Answer:

combined like terms and then follow  the order of operations.

Step-by-step explanation:

Combine like terms and then follow order of operations

What is 5 feet and 11 inches in inches

Answers

Answer:

60

Step-by-step explanation:

5 is 60 inch

If f(x)=ax+b/x and f(1)=1 and f(2)=5, what is the value of A and B?

Answers

Answer:

[tex]\huge\boxed{a=9 ; b = -8}[/tex]

Step-by-step explanation:

[tex]f(x) = \frac{ax+b}{x}[/tex]

Putting x = 1

=> [tex]f(1) = \frac{a(1)+b}{1}[/tex]

Given that f(1) = 1

=> [tex]1 = a + b[/tex]

=> [tex]a+b = 1[/tex]  -------------------(1)

Now,

Putting x = 2

=> [tex]f(2) = \frac{a(2)+b}{2}[/tex]

Given that f(2) = 5

=> [tex]5 = \frac{2a+b}{2}[/tex]

=> [tex]2a+b = 5*2[/tex]

=> [tex]2a+b = 10[/tex]  ----------------(2)

Subtracting (2) from (1)

[tex]a+b-(2a+b) = 1-10\\a+b-2a-b = -9\\a-2a = -9\\-a = -9\\a = 9[/tex]

For b , Put a = 9 in equation (1)

[tex]9+b = 1\\Subtracting \ both \ sides \ by \ 9\\b = 1-9\\b = -8[/tex]

A maker of microwave ovens advertises that no more than 10% of its microwaves need repair during the first 5 years of use. In a random sample of 50 microwaves that are 5 years old, 12% needed repairs at a=.04 can you reject the makers claim that no more than 10% of its microwaves need repair during the first five years of use?

Answers

Answer:

We conclude that no more than 10% of its microwaves need repair during the first five years of use.

Step-by-step explanation:

We are given that a maker of microwave ovens advertises that no more than 10% of its microwaves need repair during the first 5 years of use.

In a random sample of 50 microwaves that are 5 years old, 12% needed repairs.

Let p = population proportion of microwaves who need repair during the first five years of use.

So, Null Hypothesis, [tex]H_0[/tex] : p [tex]\leq[/tex] 10%      {means that no more than 10% of its microwaves need repair during the first five years of use}

Alternate Hypothesis, [tex]H_A[/tex] : p > 10%     {means that more than 10% of its microwaves need repair during the first five years of use}

The test statistics that will be used here is One-sample z-test for proportions;

                        T.S.  =  [tex]\frac{\hat p-p}{\sqrt{\frac{p(1-p)}{n} } }[/tex]  ~ N(0,1)

where, [tex]\hat p[/tex] = sample proportion of microwaves who need repair during the first 5 years of use = 12%

           n = sample of microwaves = 50

So, the test statistics =  [tex]\frac{0.12-0.10}{\sqrt{\frac{0.10(1-0.10)}{50} } }[/tex]

                                    =  0.471

The value of z-test statistics is 0.471.

Now, at a 0.04 level of significance, the z table gives a critical value of 1.751 for the right-tailed test.

Since the value of our test statistics is less than the critical value of z as 0.471 < 1.751, so we have insufficient evidence to reject our null hypothesis as the test statistics will not fall in the rejection region.

Therefore, we conclude that no more than 10% of its microwaves need repair during the first five years of use.

Find the rectangular coordinates of the point with the given polar coordinates.

Answers

Answer:

[tex]( - \sqrt{3} \: an d \: 1)[/tex]

Determine which is the appropriate approach for conducting a hypothesis test. ​Claim: The mean RDA of sodium is 2400mg. Sample​ data: n​150, ​3400, s550. The sample data appear to come from a normally distributed population.

Answers

Answer:

Use the student t distribution

Step-by-step explanation:

Here is the formula

t = (x - u) ÷(s/√N)

From the information we have in the question:

n = 150

s = 550

x = 3400

u = mean = 2400

= 3400 - 2400÷ 500/√150

= 1000/44.9

= 22.27

At 0.05 significance level, df = 149 so t tabulated will be 1.65.

We cannot use normal distribution since we do not have population standard deviationWe cannot use normal distribution since we do not have population standard deviationChisquare cannot be used since we are not testing for population varianceWe cannot use normal distribution since we do not have population standard deviationChisquare cannot be used since we are not testing for population varianceThe parametric or bootstrap method cannot be used either.

Transform the polar equation to a Cartesian (rectangular) equation: r= 4sinθ

options include:

x^2+y^2 = 4y

x^2+y^2 = -4

x^2+y^2 = 4

x^2+y^2 = -4y

Answers

Answer:

  x^2 +y^2 = 4y

Step-by-step explanation:

Using the usual translation relations, we have ...

  r^2 = x^2+y^2

  x = r·cos(θ)

  y = r·sin(θ)

Substituting for sin(θ) the equation becomes ...

  r = 4sin(θ)

  r = 4(y/r)

  r^2 = 4y

Then, substituting for r^2 we get ...

  x^2 +y^2 = 4y . . . . . matches the first choice

The table shows the height, in meters, of an object that is dropped as time passes until the object hits the ground. A 2-row table with 10 columns. The first row is labeled time (seconds), x with entries 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.6. The second row is labeled height (meters), h with entries 100, 98.8, 95.1, 89.0, 80.4, 69.4, 55.9, 40.0, 21.6, 0. A line of best fit for the data is represented by h = –21.962x + 114.655. Which statement compares the line of best fit with the actual data given by the table? According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground. According to the line of best fit, the object was dropped from a lower height. The line of best fit correctly predicts that the object reaches a height of 40 meters after 3.5 seconds. The line of best fit predicts a height of 4 meters greater than the actual height for any time given in the table.

Answers

Answer: A. According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground.

The statement first "According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground" is correct.

What is the line of best fit?

A mathematical notion called the line of the best fit connects points spread throughout a graph. It's a type of linear regression that uses scatter data to figure out the best way to define the dots' relationship.

We have a line of best fit:

h = –21.962x + 114.655

As per the data given and line of best fit, we can say the object would have impacted the ground 0.6 seconds later than it did according to the line of best fit.

Thus, the statement first "According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground" is correct.

Learn more about the line of best fit here:

brainly.com/question/14279419

#SPJ2

Which of the following is an arithmetic sequence? A.-2, 4, -6, 8, ... B.2, 4, 8, 16, ... C.-8, -6, -4, -2, ...

Answers

Answer:

C. -8, -6, -4, -2, ...

Step-by-step explanation:

An arithmetic sequence increases by the same amount every time through addition or subtraction. There is a common difference.

A: -2, 4, -6, 8, ... If there were a common difference, the numbers would not switch between being positive and back to negative. The numbers would either keep going positive or keep going negative.

B: 2, 4, 8, 16, ... The common difference between 16 and 8 is 16 - 8 = 8. The difference between 8 and 4 is 8 - 4 = 4. Since the difference changes between the numbers, this is not an arithmetic sequence.

C. -8, -6, -4, -2, ... The common difference between -2 and -4 is -2 - (-4) = -2 + 4 = 2. The difference between -4 and -6 is -4 - (-6) = -4 + 6 = 2. The difference between -6 and -8 is -6 - (-8) = -6 + 8 = 2. Since the common difference is always two, this is an arithmetic sequence.

Hope this helps!

A rectangle has an area of 81 square centimeters. Which of the following would be the rectangle's length and width? (Area = equals length×times width)

Answers

Answer:

length: 9cm

width: 9cm

Step-by-step explanation:

9×9=81

the length is 9cm and the width is also 9cm

Which is a perfect square? 6 Superscript 1 6 squared 6 cubed 6 Superscript 5 What is the length of the hypotenuse, x, if (20, 21, x) is a Pythagorean triple

Answers

Answer:

Step-by-step explanation:

Hello, by definition a perfect square can be written as [tex]a^2[/tex] where a in a positive integer.

So, to answer the first question, [tex]6^2[/tex] is a perfect square.

(a,b,c) is a Pythagorean triple means the following

[tex]a^2+b^2=c^2[/tex]

Here, it means that

[tex]x^2=20^2+21^2=841=29^2 \ \ \ so\\\\x=29[/tex]

Thank you.

Answer:

Its B

Step-by-step explanation:

Find the fourth roots of 16(cos 200° + i sin 200°).

Answers

Answer:

See below.

Step-by-step explanation:

To find roots of an equation, we use this formula:

[tex]z^{\frac{1}{n}}=r^{\frac{1}{n}}(cos(\frac{\theta}{n}+\frac{2k\pi}{n} )+\mathfrak{i}(sin(\frac{\theta}{n}+\frac{2k\pi}{n})),[/tex] where k = 0, 1, 2, 3... (n = root; equal to n - 1; dependent on the amount of roots needed - 0 is included).

In this case, n = 4.

Therefore, we adjust the polar equation we are given and modify it to be solved for the roots.

Part 2: Solving for root #1

To solve for root #1, make k = 0 and substitute all values into the equation. On the second step, convert the measure in degrees to the measure in radians by multiplying the degrees measurement by [tex]\frac{\pi}{180}[/tex] and simplify.

[tex]z^{\frac{1}{4}}=16^{\frac{1}{4}}(cos(\frac{200}{4}+\frac{2(0)\pi}{4}))+\mathfrak{i}(sin(\frac{200}{4}+\frac{2(0)\pi}{4}))[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{\pi}{4}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{\pi}{4}))[/tex]

[tex]z^{\frac{1}{4}} = 2(sin(\frac{5\pi}{18}+\frac{\pi}{4}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{\pi}{4}))[/tex]

Root #1:

[tex]\large\boxed{z^\frac{1}{4}=2(cos(\frac{19\pi}{36}))+\mathfrack{i}(sin(\frac{19\pi}{38}))}[/tex]

Part 3: Solving for root #2

To solve for root #2, follow the same simplifying steps above but change k  to k = 1.

[tex]z^{\frac{1}{4}}=16^{\frac{1}{4}}(cos(\frac{200}{4}+\frac{2(1)\pi}{4}))+\mathfrak{i}(sin(\frac{200}{4}+\frac{2(1)\pi}{4}))[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{2\pi}{4}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{2\pi}{4}))\\[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{\pi}{2}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{\pi}{2}))\\[/tex]

Root #2:

[tex]\large\boxed{z^{\frac{1}{4}}=2(cos(\frac{7\pi}{9}))+\mathfrak{i}(sin(\frac{7\pi}{9}))}[/tex]

Part 4: Solving for root #3

To solve for root #3, follow the same simplifying steps above but change k to k = 2.

[tex]z^{\frac{1}{4}}=16^{\frac{1}{4}}(cos(\frac{200}{4}+\frac{2(2)\pi}{4}))+\mathfrak{i}(sin(\frac{200}{4}+\frac{2(2)\pi}{4}))[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{4\pi}{4}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{4\pi}{4}))\\[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\pi))+\mathfrak{i}(sin(\frac{5\pi}{18}+\pi))\\[/tex]

Root #3:

[tex]\large\boxed{z^{\frac{1}{4}}=2(cos(\frac{23\pi}{18}))+\mathfrak{i}(sin(\frac{23\pi}{18}))}[/tex]

Part 4: Solving for root #4

To solve for root #4, follow the same simplifying steps above but change k to k = 3.

[tex]z^{\frac{1}{4}}=16^{\frac{1}{4}}(cos(\frac{200}{4}+\frac{2(3)\pi}{4}))+\mathfrak{i}(sin(\frac{200}{4}+\frac{2(3)\pi}{4}))[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{6\pi}{4}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{6\pi}{4}))\\[/tex]

[tex]z^{\frac{1}{4}}=2(cos(\frac{5\pi}{18}+\frac{3\pi}{2}))+\mathfrak{i}(sin(\frac{5\pi}{18}+\frac{3\pi}{2}))\\[/tex]

Root #4:

[tex]\large\boxed{z^{\frac{1}{4}}=2(cos(\frac{16\pi}{9}))+\mathfrak{i}(sin(\frac{16\pi}{19}))}[/tex]

The fourth roots of 16(cos 200° + i(sin 200°) are listed above.

A standardized​ exam's scores are normally distributed. In a recent​ year, the mean test score was and the standard deviation was . The test scores of four students selected at random are ​, ​, ​, and . Find the​ z-scores that correspond to each value and determine whether any of the values are unusual. The​ z-score for is nothing. ​(Round to two decimal places as​ needed.) The​ z-score for is nothing. ​(Round to two decimal places as​ needed.) The​ z-score for is nothing. ​(Round to two decimal places as​ needed.) The​ z-score for is nothing. ​(Round to two decimal places as​ needed.) Which​ values, if​ any, are​ unusual? Select the correct choice below​ and, if​ necessary, fill in the answer box within your choice. A. The unusual​ value(s) is/are nothing. ​(Use a comma to separate answers as​ needed.) B. None of the values are unusual.

Answers

Answer:

The​ z-score for 1880 is 1.34.

The​ z-score for 1190 is -0.88.

The​ z-score for 2130 is 2.15.

The​ z-score for 1350 is -0.37.

And the z-score of 2130 is considered to be unusual.

Step-by-step explanation:

The complete question is: A standardized​ exam's scores are normally distributed. In recent​ years, the mean test score was 1464 and the standard deviation was 310. The test scores of four students selected at random are ​1880, 1190​, 2130​, and 1350. Find the​ z-scores that correspond to each value and determine whether any of the values are unusual. The​ z-score for 1880 is nothing. ​(Round to two decimal places as​ needed.) The​ z-score for 1190 is nothing. ​(Round to two decimal places as​ needed.) The​ z-score for 2130 is nothing. ​(Round to two decimal places as​ needed.) The​ z-score for 1350 is nothing. ​(Round to two decimal places as​ needed.) Which​ values, if​ any, are​ unusual? Select the correct choice below​ and, if​ necessary, fill in the answer box within your choice. A. The unusual​ value(s) is/are nothing. ​(Use a comma to separate answers as​ needed.) B. None of the values are unusual.

We are given that the mean test score was 1464 and the standard deviation was 310.

Let X = standardized​ exam's scores

The z-score probability distribution for the normal distribution is given by;

                          Z  =  [tex]\frac{X-\mu}{\sigma}[/tex]  ~ N(0,1)

where, [tex]\mu[/tex] = mean test score = 1464

           [tex]\sigma[/tex] = standard deviation = 310

S, X ~ Normal([tex]\mu=1464, \sigma^{2} = 310^{2}[/tex])

Now, the test scores of four students selected at random are ​1880, 1190​, 2130​, and 1350.

So, the z-score of 1880 =  [tex]\frac{X-\mu}{\sigma}[/tex]

                                      =  [tex]\frac{1880-1464}{310}[/tex]  = 1.34

The z-score of 1190 =  [tex]\frac{X-\mu}{\sigma}[/tex]

                                =  [tex]\frac{1190-1464}{310}[/tex]  = -0.88

The z-score of 2130 =  [tex]\frac{X-\mu}{\sigma}[/tex]

                                =  [tex]\frac{2130-1464}{310}[/tex]  = 2.15

The z-score of 1350 =  [tex]\frac{X-\mu}{\sigma}[/tex]

                                =  [tex]\frac{1350-1464}{310}[/tex]  = -0.37

Now, the values whose z-score is less than -1.96 or higher than 1.96 are considered to be unusual.

According to our z-scores, only the z-score of 2130 is considered to be unusual as all other z-scores lie within the range of -1.96 and 1.96.

Let f(x)=x+8 and g(x)= x2-6x-7 find f(g2)

Answers

Answer:

-7.

Step-by-step explanation:

g(x) = x^2 - 6x - 7

g(2) = 2^2 - 6(2) - 7

= 4 - 12 - 7

= -8 - 7

= -15

f(x) = x + 8

f(-15) = (-15) + 8

= 8 - 15

= -7

Hope this helps!


What is the volume of a cube with a side length of
of a unit?

Answers

It’s d times it three times length width height

Reduce the following fraction to lowest terms: 8/14

Answers

Answer:

4/7

Step-by-step explanation:

divide both by two for its simplest form

Answer:4/7

Step-by-step explanation

Divide both the numerator and denominator by 2

The result for the numerator is 8/2=4

that of the denominator is 14/2=7

Therefore the resultant answer is 4/7

Brian needs to paint a logo using two right triangles. The dimensions of the logo are shown below. What is the difference between the area of the large triangle and the area of the small triangle? ​

Answers

Answer:

7.5 cm²

Step-by-step explanation:

Dimensions of the large ∆:

[tex] base (b) = 3cm, height (h) = 9cm [/tex]

[tex] Area = 0.5*b*h = 0.5*3*9 = 13.5 cm^2 [/tex]

Dimensions of the small ∆:

[tex] base (b) = 2cm, height (h) = 6cm [/tex]

[tex] Area = 0.5*b*h = 0.5*2*6 = 6 cm^2 [/tex]

Difference between the area of the large and the small ∆ = 13.5 - 6 = 7.5 cm²

if f(x)=3x-3 and g(x)=-x2+4,then f(2)-g(-2)=

Answers

Answer:

3

Step-by-step explanation:

f(x)=3x-3

g(x)=-x^2+4,

f(2) = 3(2) -3 = 6-3 =3

g(-2) = -(-2)^2+4 = -4+4 = 0

f(2)-g(-2)= = 3-0 = 3

solve for x: 5x+3+8x-4=90

Answers

Answer:

[tex]x = 7[/tex]

Step-by-step explanation:

We can solve the equation [tex]5x+3+8x-4=90[/tex] by isolating the variable x on one side. To do this, we must simplify the equation.

[tex]5x+3+8x-4=90[/tex]

Combine like terms:

[tex]13x - 1 = 90[/tex]

Add 1 to both sides:

[tex]13x = 91[/tex]

Divide both sides by 13:

[tex]x = 7[/tex]

Hope this helped!

Answer:

x = 7

Step-by-step exxplanation:

5x + 3 + 8x - 4 = 90

5x + 8x = 90 - 3 + 4

13x = 91

x = 91/13

x = 7

probe:

5*7 + 3 + 8*7 - 4 = 90

35 + 3 + 56 - 4 = 90

PLEASE HELP!!!
Evaluate the expression when b=4 and y= -3
-b+2y

Answers

Answer: -10

Step-by-step explanation: All you have to do is plug the values into the equation. -4+2(-3). Then you solve the equation using PEDMAS.

1. -4+2(-3)

2. -4+(-6)

3.-4-6

4.-10

Answer:

8

Step-by-step explanation:

-b + 2y

if

b = 4

and

y = 3

then:

-b + 2y = -4 + 2*6 = -4 + 12

= 8

A cabinet door has a perimeter of 76 inches. Its area is 357 square inches. What are the dimensions of the door?

Answers

Answer:

  17 by 21 inches

Step-by-step explanation:

The perimeter is twice the sum of the dimensions, and the area is their product, so you have ...

  L + W = 38

  LW = 357

__

Solution:

  W(38 -W) = 357 . . . . . substitute for L

  -(W^2 -76W) = 357 . . expand on the left

  -(W^2 -38 +19^2) = 357 -19^2 . . . . complete the square

  (W -19)^2 = 4 . . . . . . . write as a square

  W -19 = ±√4 = ±2 . . . take the square root; next, add 19

  W = 19 ±2 = {17, 21} . . . . if width is one of these, length is the other

The dimensions are 17 by 21 inches.

What is the solution to the following system of equations? 3x-2y=12 6x - 4y = 24

Answers

Answer:

D question,somewhat confusing, itsit's like simultaneous equation,but values are different

Answer:

x = 4 + 2y/3

Step-by-step explanation:

Find the number of pieces of floor tiles each measuring 26cm long and 10cm wide needed to lay a floor measuring 260m long and 15m wide

Answers

Answer:

150,000

Step-by-step explanation:

1 m = 100 cm

260 m = 260 * 100 cm = 26000 cm

15 m = 15 * 100 cm = 1500 cm

area of floor = LW = 26000 cm * 1500 cm = 39,000,000 cm^2

area of 1 tile = 26 cm + 10 cm = 260 cm^2

number of tiles needed = 39,000,000/260 = 150,000

Answer: 150,000 tiles

Correct answer is 150000 tiles. Hope this helps ya

The probability density function for random variable W is given as follows: Let x be the 100pth percentile of W and y be the 100(1 – p)th percentile of W, where 0

Answers

Answer:

Step-by-step explanation:

A probability density function (pdf) is used for continuous random variables. That is why p is between 0 and 1 (the two extremes - 0 and 1 - exclusive).

X = 100pth percentile of W

Y = 100(1-p)th percentile of W

Expressing Y as a function of X;

Y = 100(1-p)th = 100th - 100pth

Recall that 100pth is same as X, so substitute;

Y = 100th - X

where 100th = hundredth percentile of W and X = 100pth percentile of W  

What does "C" represent and how do you evaluate this?

Answers

It represents 'combinations'.

It means that you have 9 items, and you want to count the combinations of 7 items.

The answer is:
9! / ((9-7)! * (7!))
= 9! / (2! * 7!)
= 9*8/2
= 36

[tex]_9C_7=\dfrac{9!}{7!2!}=\dfrac{8\cdot9}{2}=36[/tex]

Give the domain and range of each relation using set notation​

Answers

Answer:

See below.

Step-by-step explanation:

First, recall the meanings of the domain and range.

The domain is the span of x-values covered by the graph.

And the range is the span of y-values covered by the graph.

1)

So, we have here an absolute value function.

As we can see, the domain of the function is all real numbers because the graph stretches left and right infinitely. Therefore, the domain of the function is:

[tex]\{x|x\in\textbb{R}\}[/tex]

(You are correct!)

For the range, notice how the function stops at y=7. The highest point of the function is (-2,7). There graph doesn't and won't ever reach above y=7. Therefore, the range of the graph is all values less than or equal to 7. In set notation, this is:

[tex]\{y|y\leq 7\}[/tex]

2)

We have here an ellipse.

First, for the domain. We can see the the span of x-values covered by the ellipse is from x=-4 to x=6. In other words, the domain is all values in between these two numbers and including them. Therefore, we can write it as such:

[tex]-4\leq x\leq 6[/tex]

So x is all numbers greater than or equal to -4 but less than or equal to 6. This describes the span of x-values. In set notation, this is:

[tex]\{x|-4\leq x\leq 6\}[/tex]

For the range, we can see that the span of x values covered by the ellipse is from y=-5 to y=1. Just like the domain, we can write it like this:

[tex]-5\leq y\leq 1[/tex]

This represents all the y-values between -5 and 1, including -5 and 1.

In set notation, thi is:

[tex]\{y|-5\leq y\leq 1\}[/tex]

Find the area of the shaded regions:

Answers

area of Arc subtending [tex]360^{\circ}[/tex] (i.e. the whole circle) is $\pi r^2$

so area of Arc subtending $\theta^{\circ}$ is, $\frac{ \pi r^2}{360^{\circ}}\times \theta^{\circ}$

$\theta =72^{\circ}$ so the area enclosed by one such arc is $\frac{\pi (10)^272}{360}$

abd there are 2 such arcs, so double the area.

[tex] \LARGE{ \underline{ \boxed{ \rm{ \purple{Solution}}}}}[/tex]

Given:-Radius of the circle = 10 inchesAngle of each sector = 72°Number of sectors = 2

To FinD:-Find the area of the shaded regions....?

How to solve?

For solving this question, Let's know how to find the area of a sector in a circle?

[tex] \large{ \boxed{ \rm{area \: of \: sector = \frac{\theta}{360} \times \pi {r}^{2} }}}[/tex]

Here, Θ is the angle of sector and r is the radius of the circle. So, let's solve this question.

Solution:-

We have,

No. of sectors = 2Angle of sector = 72°

By using formula,

⇛ Area of shaded region = 2 × Area of each sector

⇛ Area of shaded region = 2 × Θ/360° × πr²

⇛ Area of shaded region = 2 × 72°/360° × 22/7 × 10²

⇛ Area of shaded region = 2/5 × 100 × 22/7

⇛ Area of shaded region = 40 × 22/7

⇛ Area of shaded region = 880/7 inch. sq.

⇛ Area of shaded region = 125.71 inch. sq.

☄ Your Required answer is 125.71 inch. sq(approx.)

━━━━━━━━━━━━━━━━━━━━

On a coordinate plane, 2 lines are shown. Line A B has points (negative 4, negative 2) and (4, 4). Line C D has points (0, negative 3) and (4, 0). Which statement best explains the relationship between lines AB and CD? They are parallel because their slopes are equal. They are parallel because their slopes are negative reciprocals. They are not parallel because their slopes are not equal. They are not parallel because their slopes are negative reciprocals.

Answers

Answer:

A. they are parallel because their slopes are equal.

Step-by-step explanation:

edge 2020

Answer:

its A in egde

Step-by-step explanation:

Other Questions
What is the simplified expression for 22 2?24O 20021O 220 23 Which type of nuclear power reactor is used in only 1 percent of all power plants? What are the constraints for designing small and large files and how these are resolved in different file system An organism that reproduces asexually will have Translate and solve: 82 less than a is at least -82 I need help. can I get some The side of an Equileteral triangle is 12cm. What is its Area? Which statement describes an interaction between the biosphere and the atmosphere that is related to photosynthesis? During photosynthesis, plant roots take in water from soil. During photosynthesis, plants take in carbon dioxide from the air. Through photosynthesis, energy stored in plants is released into the air. Through photosynthesis, energy stored in plants is transferred to humans who eat them (Process scores in a text file) Suppose that a text file contains an unspecified number of scores. Write a program that reads the scores from the file and displays their total and average. Scores are separated by blanks. Your program should prompt the user to enter a filename. Here is a sample run: 761.8 x 10^-8 Express the number in scientific notation. A) 7.618 x 10^-6 B) 7.618 x 10^-8 C) 7.618 x 10^2 D) 7.618 x 10^6 A rotating light is located 16 feet from a wall. The light completes one rotation every 2 seconds. Find the rate at which the light projected onto the wall is moving along the wall when the light's angle is 20 degrees from perpendicular to the wall. Maria has eight black marbles, fourteen clear marbles, and twelve blue marbles in a bag. If she picks two marbles at random, without replacement, what is the probability that she will select a blue marble first, then a clear marble? 2. Relatively few drivers are touched by thetraffic crash problem, either directly orindirectly. TRUE OR FALSE attachment help for question c no explanation only answer thank you Which correctly lists the three types of rock particles that make up soil? A. air, clay, and sand B. clay, water, and silt C. sand, clay, and silt D. silt, water, and air answer C.sand, clay, and silt Logan Corporation issued $800,000 of 8% bonds on October 1, 2006, due on October 1, 2011. The interest is to be paid twice a year on April 1 and October 1. The bonds were sold to yield 10% effective annual interest. Logan Corporation closes its books annually on December 31. Instructions (a) Prepare the amortization schedule (effective interest method) through October 1, 2007. (b) Prepare the adjusting entry for December 31, 2007. Use the effective-interest method. (c) Compute the interest expense to be reported in the income statement for the year ended December 31, 2007. In the image, the arrow Is pointing to a celestial object. Which attribute disqualifies the object from being a planet?A. It appears to have no moons.B. It is spherical in shape.C. Its neighborhood is not clear.D. It has horizontal bands on its surface. The amounts of time per workout an athlete uses a stairclimber are normally distributed, with a mean of minutes and a standard deviation of minutes. Find the probability that a randomly selected athlete uses a stairclimber for (a) less than minutes, (b) between and minutes, and (c) more than minutes. (a) The probability that a randomly selected athlete uses a stairclimber for less than minutes is nothing. (Round to four decimal places as needed.) (b) The probability that a randomly selected athlete uses a stairclimber between and minutes is nothing. (Round to four decimal places as needed.) (c) The probability that a randomly selected athlete uses a stairclimber for more than minutes is nothing. accountant for Huckleberry... The accountant for Huckleberry Company is preparing the company's statement of cash flows for the fiscal year just ended. The following information is available: Retained earnings balance at the beginning of the year $ 160,000 Cash dividends declared for the year 49,600 Net income for the year 96,500 What is the ending balance for retained earnings draw the graph of linear equation 5y = 3x + 18 on a cartesian plane. From the graph check weather (-2,4) is the solution of the linear equation or not PLS URGENT ANSWER