Answer:
2m
Explanation:
wavelength=speed/frequency
=340/170
=2m
A person with a near point of 85 cm, but excellent distant vision, normally wears corrective glasses. But he loses them while traveling. Fortunately, he has his old pair as a spare.
(a) If the lenses of the old pair have a power of +2.25 diopters, what is his near point (measured from his eye) when he is wearing the old glasses if they rest 2.0 cm in front of his eye?
(b) What would his near point be if his old glasses were contact lenses instead?
Answer:
a) p = 95.66 cm, b) p = 93.13 cm
Explanation:
For this problem we use the constructor equation
[tex]\frac{1}{f} = \frac{1}{p} + \frac{1}{q}[/tex]
where f is the focal length, p and q are the distances to the object and the image, respectively
the power of the lens is
P = 1 / f
f = 1 / P
f = 1 / 2.25
f = 0.4444 m
the distance to the object is
[tex]\frac{1}{p} = \frac{1}{f} -\frac{1}{q}[/tex]
the distance to the image is
q = 85 -2
q = 83 cm
we must have all the magnitudes in the same units
f = 0.4444 m = 44.44 cm
we calculate
[tex]\frac{1}{p} = \frac{1}{44.44} - \frac{1}{83}[/tex]
1 / p = 0.010454
p = 95.66 cm
b) if they were contact lenses
q = 85 cm
[tex]\frac{1}{p} = \frac{1}{44.44} - \frac{1}{85}[/tex]
1 / p = 0.107375
p = 93.13 cm
An object is 2.0 cm from a double convex lens with a focal length of 1.5 cm. Calculate the image distance
Answer:
0.857 cm
Explanation:
We are given that:
The focal length for a convex lens to be (f) = 1.5cm
The object distance (u) = - 2.0 cm
We are to determine the image distance (v) = ??? cm
By applying the lens formula:
[tex]\dfrac{1}{f} = \dfrac{1}{u}+\dfrac{1}{v}[/tex]
By rearrangement and making (v) the subject of the above formula:
[tex]v = \dfrac{uf}{u-f}[/tex]
replacing the given values:
[tex]v = \dfrac{(-2.0)(1.5)}{(-2.0 -1.5)}[/tex]
[tex]v = \dfrac{-3.0}{(-3.5)}[/tex]
v = 0.857 cm
Can you think of reasons why the charge on each ball decreases over time and where the charges might go
Answer:
By the principle of corona discharge.
Explanation:
The charge on each ball will decreases over time due to the electrical discharge in air.
According to the principle of corona discharge, when the curvature is small, the discharge of the charge takes placed form the pointed ends.
Solids diffuse because the particles cannot move.
A. Can
B. Not enough info
C. Cannot
D. Sometimes will
Solids cannot diffuse.
When a golfer tees off, the head of her golf club which has a mass of 158 g is traveling 48.2 m/s just before it strikes a 46.0 g golf ball at rest on a tee. Immediately after the collision, the club head continues to travel in the same direction but at a reduced speed of 32.7 m/s. Neglect the mass of the club handle and determine the speed of the golf ball just after impact.
Answer:
v₂ = 53.23 m/s
Explanation:
Given that,
The mass of a golf club, m₁ = 158 g = 0.158 kg
The initial speed of a golf club, u₁ = 48.2 m/s
The mass of a golf ball, m₂ = 46 g = 0.046 kg
It was at rest, u₂ = 0
Immediately after the collision, the club head continues to travel in the same direction but at a reduced speed of 32.7 m/s, v₁ = 32.7 m/s
We use the conservation of energy to find the speed of the golf ball just after impact as follows :
[tex]m_1u_1+m_2u_2=m_1v_1+m_2v_2\\\\v_2=\dfrac{m_1u_1-m_1v_1}{m_2}\\\\v_2=\dfrac{0.158(48.2)-0.158(32.7)}{0.046}\\\\=53.23\ m/s[/tex]
So, the speed of the golf ball just after the impact is equal to 53.23 m/s.
How do the magnitudes of the currents through the full circuits compare for Parts I-III of this exercise, in which resistors are combined in series, in parallel, and in combination
Answer: hello tables and data related to your question is missing attached below are the missing data
answer:
a) I = I₁ = I₂ = I₃ = 0.484 mA
b) I₁ = 0.016 amps
I₂ = 0.0016 amps
I₃ = 7.27 * 10^-4 amps
c) I₁ = 1.43 * 10^-3 amp
I₂ = 0.65 * 10^-3 amps
Explanation:
A) magnitude of current for Part 1
Resistors are connected in series
Req = r1 + r2 + r3
= 3300 Ω ( value gotten from table 1 ) ,
V = 1.6 V ( value gotten from table )
hence I ( current ) = V / Req = 1.6 / 3300 = 0.484 mA
The magnitude of current is the same in the circuit
Vi = I * Ri
B) magnitude of current for part 2
Resistors are connected in parallel
V = 1.6 volts
Req = [ ( R1 * R2 / R1 + R2 ) * R3 / ( R1 * R2 / R1 + R2 ) + R3 ]
= [ ( 100 * 1000 / 100 + 1000) * 2200 / ( 100 * 1000 / 100 + 1000 ) + 2200]
= 87.30 Ω
For a parallel circuit the current flow through each resistor is different
hence the magnitude of the currents are
I₁ = V / R1 = 1.6 / 100 = 0.016 amps
I₂ = V / R2 = 1.6 / 1000 = 0.0016 amps
I₃ = V / R3 = 1.6 / 2200 = 7.27 * 10^-4 amps
C) magnitude of current for part 3
Resistors are connected in combination
V = 1.6 volts
Req = R1 + ( R2 * R3 / R2 + R3 )
= 766.66 Ω
Total current ( I ) = V / Req = 1.6 / 766.66 = 2.08 * 10^-3 amps
magnitude of currents
I₁ = ( I * R3 ) / ( R2 + R3 ) = 1.43 * 10^-3 amps
I₂ = ( I * R2 ) / ( R2 + R3 ) = 0.65 * 10^-3 amps
A wheel has a diameter of 10m and weight 360N what minimum horizontal force is necessary to pull the wheel over a brick 0.1m when a force is applied at the wheel
Topic: Chapter 10: Projectory or trajectile?
Projectile range analysis:
A projectile is launched from the ground at 10 m/s, at
an angle of 15° above the horizontal and lands 5.1 m away.
What other angle could the projectile be launched at, with the same velocity,
and land 5.1 m away?
90°
75°
45
50°
30°
Answer:
The other angle is 75⁰
Explanation:
Given;
velocity of the projectile, v = 10 m/s
range of the projectile, R = 5.1 m
angle of projection, 15⁰
The range of a projectile is given as;
[tex]R = \frac{u^2sin(2\theta)}{g}[/tex]
To find another angle of projection to give the same range;
[tex]5.1 = \frac{10^2 sin(2\theta)}{9.81} \\\\100sin(2\theta) = 50\\\\sin(2\theta) = 0.5\\\\2\theta = sin^{-1}(0.5)\\\\2\theta = 30^0\\\\\theta = 15^0\\\\since \ the \ angle \ occurs \ in \ \ the \ first \ quadrant,\ the \ equivalent \ angle \\ is \ calculated \ as;\\\\90- \theta = 15^0\\\\\theta = 90 - 15^0\\\\\theta = 75^0[/tex]
Check:
sin(2θ) = sin(2 x 75) = sin(150) = 0.5
sin(2θ) = sin(2 x 15) = sin(30) = 0.5
An inductor of inductance 0.02H and capacitor of capatance 2uF are connected in series to an a.c. source of frequency 200 Hz- Calculate the Impedance in the circuit . TC
Explanation:
Given:
L = 0.02 H
C = [tex]2\:\mu \text{F}[/tex]
f = 200 Hz
The general form of the impedance Z is given by
[tex]Z = \sqrt{R^2 + (X_L - X_C)^2}[/tex]
Since this is a purely inductive/capacitive circuit, R = 0 so Z reduces to
[tex]Z = \sqrt{(X_L - X_C)^2} = \sqrt{\left(\omega L - \dfrac{1}{\omega C} \right)^2}[/tex]
[tex]\:\:\:\:\:\:\:= \sqrt{\left(2 \pi L - \dfrac{1}{2 \pi f C} \right)^2}[/tex]
[tex]\:\:\:\:\:\:\:= \sqrt{\left[2 \pi (200\:\text{Hz})(0.02\:\text{H}) - \dfrac{1}{2 \pi (200\:\text{Hz})(2×10^{-6}\:\text{F})} \right]^2}[/tex]
[tex]\:\:\:\:\:\:\:= \sqrt{(25.13\:\text{ohms} - 397.89\:\text{ohms})^2}[/tex]
[tex]\:\:\:\:\:\:\:=372.66\:\text{ohms}[/tex]
A mass attached to the end of a spring is oscillating with a period of 2.25 s on a horizontal frictionless surface. The mass was released from rest at
t = 0
from the position
x = 0.0480 m.
Determine the location of the mass at
t = 5.85 s?
Answer:
[tex]X=0.0389m[/tex]
Explanation:
From the question we are told that:
Period of spring [tex]T_s=2.25s[/tex]
Initial Position of Mass [tex]x=0.0480m[/tex]
Final Mass period [tex]T_f=5.85s[/tex]
Generally the equation for the Mass location is mathematically given by
[tex]X=xcos*\frac{2\pi T_s}{T_f}[/tex]
[tex]X=0.048*cos*\frac{2\pi 5.85}{2.25}[/tex]
[tex]X=0.0389m[/tex]
PLEASE HELP ME WITH THIS ONE QUESTION
What is the rest energy of a proton? (c = 2.9979 x 10^9 m/s, mp = 1.6726 x 10^-27)
[tex]E_0=1.5033×10^{-10}\:\text{J}[/tex]
Explanation:
The rest energy [tex]E_0[/tex] of a proton of mass [tex]m_p[/tex] is given by
[tex]E_0 = m_pc^2[/tex]
[tex]\:\:\:\:\:\:\:=(1.6726×10^{-27}\:\text{kg})(2.9979×10^8\:\text{m/s})^2[/tex]
[tex]\:\:\:\:\:\:\:=1.5033×10^{-10}\:\text{J}[/tex]
A student claimed that thermometers are useless because a
thermometer always registers its own temperature. How would you
respond?
[
A car is moving at a speed of 60 mi/hr (88 ft/sec) on a straight road when the driver steps on the brake pedal and begins decelerating at a constant rate of 10ft/s2 for 3 seconds. How far did the car go during this 3 second interval?
Answer:
219 ft
Explanation:
Here we can define the value t = 0s as the moment when the car starts decelerating.
At this point, the acceleration of the car is given by the equation:
A(t) = -10 ft/s^2
Where the negative sign is because the car is decelerating.
To get the velocity equation of the car, we integrate over time, to get:
V(t) = (-10 ft/s^2)*t + V0
Where V0 is the initial velocity of the car, we know that this is 88 ft/s
Then the velocity equation is:
V(t) = (-10 ft/s^2)*t + 88ft/s
To get the position equation we need to integrate again, this time we get:
P(t) = (1/2)*(-10 ft/s^2)*t^2 + (88ft/s)*t + P0
Where P0 is the initial position of the car, we do not know this, but it does not matter for now.
We want to find the total distance that the car traveled in a 3 seconds interval.
This will be equal to the difference in the position at t = 3s and the position at t = 0s
distance = P(3s) - P(0s)
= ( (1/2)*(-10 ft/s^2)*(3s)^2+ (88ft/s)*3s + P0) - ( (1/2)*(-10 ft/s^2)*(0s)^2 + (88ft/s)*0s + P0)
= ( (1/2)*(-10 ft/s^2)*9s^2+ (88ft/s)*3s + P0) - ( P0)
= (1/2)*(-10 ft/s^2)*9s^2+ (88ft/s)*3s = 219ft
The car advanced a distance of 219 ft in the 3 seconds interval.
Cold air rises because it is denser than water, is this true?
Answer:
true
Explanation:
im not sure please dont attack me
Question: A NEO distance from the Sun is 1.17 AU. What is the speed of the NEO (round your answer to 2 decimal places)
Answer:
v = 2.75 10⁴ m / s
Explanation:
For this exercise we must use Kepler's third law which is an application of Newton's second law to the solar system
F = ma
where force is the force of gravity
F = [tex]G \frac{m M}{r^2}[/tex]
acceleration is centripetal
a = [tex]\frac{v^2}{r}[/tex]
we substitute
G m M / r² = m v² / r
[tex]\frac{GM}{r}[/tex] = v²
v = [tex]\sqrt{GM/r}[/tex]
indicate that the radius of the orbit is r = 1.17 AU, let's reduce to the SI system
r = 1.17 AU (1.496 10¹¹ m / 1 AI) = 1.76 10¹¹ m
let's calculate
v = [tex]\sqrt{\frac{6.67 \ 10^{-11} 1.991 \ 10^{30} }{ 1.76 \ 10^{11}} }[/tex]Ra (6.67 10-11 1.991 10 30 / 1.76 10 11
v = [tex]\sqrt{7.5454 \ 10^8 }[/tex]ra 7.5454 10 8
v = 2.75 10⁴ m / s
g As they reach higher temperatures, most semiconductors... Selected Answer: have an increased resistance. Answers: have a constant resistance. have an increased resistance. have a decreased resistance.
Answer:
have an increased resistance
A typical incandescent light bulb consumes 75 W of power and has a mass of 20 g. You want to save electrical energy by dropping the bulb from a height great enough so that the kinetic energy of the bulb when it reaches the floor will be the same as the energy it took to keep the bulb on for 2.0 hours. From what height should you drop the bulb, assuming no air resistance and constant g?
Answer:
h = 2755102 m = 2755.102 km
Explanation:
According to the given condition:
Potential Energy = Energy Consumed by Bulb
[tex]mgh = Pt\\\\h = \frac{Pt}{mg}[/tex]
where,
h = height = ?
P = Power of bulb = 75 W
t = time = (2 h)(3600 s/1 h) = 7200 s
m = mass of bulb = 20 g = 0.02 kg
g = acceleration due to gravity = 9.8 m/s²
Therefore,
[tex]h = \frac{(75\ W)(7200\ s)}{(0.02\ kg)(9.8\ m/s^2)}[/tex]
h = 2755102 m = 2755.102 km
As you move farther away from a source emitting a pure tone, the ___________ of the sound you hear decreases.
Answer:
frequency
Explanation:
The phenomenon of apparent change in frequency due to the relation motion between the source and the observer is called Doppler's effect.
So, when we move farther, the frequency of sound decreases. The formula of the Doppler's effect is
[tex]f' = \frac{v + v_o}{v+ v_s} f[/tex]
where, v is the velocity of sound, vs is the velocity of source and vo is the velocity of observer, f is the true frequency. f' is the apparent frequency.
Light with a wavelength of 5.0 · 10-7 m strikes a surface that requires 2.0 ev to eject an electron. Calculate the energy, in joules, of one incident photon at this frequency. _____ joules 4.0 x 10 -19 4.0 x 10 -49 9.9 x 10 -32 1.1 x 10 -48
Answer:
pretty sure its 6.2 x 10^-13
Explanation:
I looked it up I'm not a bigbrain but want to help
Two plastic bowling balls, 1 and 2, are rubbed with cloth until they each carry a uniformly distributed charge of magnitude 0.50 nC . Ball 1 is negatively charged, and ball 2 is positively charged. The balls are held apart by a 900-mm stick stuck through the holes so that it runs from the center of one ball to the center of the other.
Required:
What is the magnitude of the dipole moment of the arrangement?
Answer:
The right solution is "[tex]4.5\times 10^{-10} \ Cm[/tex]".
Explanation:
Given that,
q = 0.50 nC
d = 900 mm
As we know,
⇒ [tex]P=qd[/tex]
By putting the values, we get
⇒ [tex]=0.50\times 900[/tex]
⇒ [tex]=(0.50\times 10^{-9})\times 0.9[/tex]
⇒ [tex]=4.5\times 10^{-10} \ Cm[/tex]
Answer:
The dipole moment is 4.5 x 10^-10 Cm.
Explanation:
Charge on each ball, q = 0.5 nC
Length, L = 900 mm = 0.9 m
The dipole moment is defined as the product of either charge and the distance between them.
It is a vector quantity and the direction is from negative charge to the positive charge.
The dipole moment is
[tex]p = q L\\\\p = 0.5 \times 10^{-9}\times 0.9\\\\p = 4.5\times 10^{-10} Cm[/tex]
Question 3 of 10
Which statement describes the law of conservation of energy?
A. Air resistance has no effect on the energy of a system.
B. Energy cannot be created or destroyed.
C. The total energy in a system can only increase.
D. Energy cannot change forms.
هما
SUBMIT
Answer:
B . energy cannot be created or destroyed
A submarine has a "crush depth" (that is, the depth at which
water pressure will crush the submarine) of 400 m. What is
the approximate pressure (water plus atmospheric) at this
depth? (Recall that the density of seawater is 1025 kg/m3, g=
9.81 m/s2, and 1 kg/(m-s2) = 1 Pa = 9.8692 x 10-6 atm.)
Answer:
P =40.69 atm
Explanation:
We need to find the approximate pressure at a depth of 400 m.
It can be calculated as follows :
P = Patm + ρgh
Put all the values,
[tex]P=1\ atm+1025 \times 9.81\times 400\times 9.8692\times 10^{-6}\ atm/Pa\\\\P=40.69\ atm[/tex]
So, the approximate pressure is equal to 40.69 atm.
if the tin is made of a metal which has a density of 7800 kg per metre cubic calculate the volume of the metal used to make tin and lead
Answer:
XL sleep usual Addison officer at home and ear is not a short time to be be free and ear is a short time to make a short time
Explanation:
so that I can take the class on Monday and ear is not a short time to be be free and ear is not a short time to be be free and ear is not a short time to be be free and ear is not a short time to time for a day or night and ear buds is Anshu and duster and duster fgor a day or night is Anshu and duster for a day or not a week of computer science from your computer and I am in the same as I am a short of ti and you can be the first time I will be be
a vechile having a mass of 500kg is moving with a speed of 10m/s.Sand is dropped into it at the rate of 10kg/min.What force is needed to keep the vechile moving with uniform speed
Answer:
1.67 N
Explanation:
Applying,
F = u(dm/dt)+m(du/dt)................ Equation 1
Where F = force, m = mass of the vehicle, u = speed.
Since u is constant,
Therefore, du/dt = 0
F = u(dm/dt)............... Equation 2
From the question,
Given: u = 10 m/s, dm/dt = 10 kg/min = (10/60) kg/s
Substitute these values into equation 2
F = 10(10/60)
F = 100/60
F = 1.67 N
suppose the tank is open to the atmosphere instead of being closed. how does the pressure vary along
Answer:
Pressure is more in the open container than the closed one.
Explanation:
The pressure due to the fluid at a depth is given by
Pressure = depth x density of fluid x gravity
So, when the container is open, the atmospheric pressure is also add up but when the container is closed only the pressure due to the fluid is there.
So, when the container is open, the pressure is atmospheric pressure + pressure due to the fluid.
hen the container is closed only the pressure due to the fluid is there.
In the following calculations, be sure to express the answer in standard scientific notation with the appropriate number of
significant figures.
3.88 x 1079 - 4.701 x 1059
x 10
g
Answer:
-45,597.07
Explanation:
if not in scientific calculator and yung answer nung sa scientific sa comment na lang dinadownload ko ka eh
In a television set the power needed to operate the picture tube comes from the secondary of a transformer. The primary of the transformer is connected to a 120-V receptacle on a wall. The picture tube of the television set uses 76 W, and there is 5.5 mA of current in the secondary coil of the transformer to which the tube is connected. Find the turns ratio Ns/Np of the transformer.
Ns/Np = ______.
Answer:
c) N_s / N_p = 115.15
Explanation:
Let's look for the voltage in the secondary, they do not indicate the power dissipated
P = V_s i
V_s = P / i
V_s = 76 / 5.5 10⁻³
V_s = 13.818 10³ V
the relationship between the primary and secondary of a transformer is
[tex]\frac{V_p}{N_p} = \frac{V_s}{N_s}[/tex]
[tex]\frac{N_s}{N_p} = \frac{V_s}{V_p}[/tex]
Ns / Np = 13,818 10³ /120
N_s / N_p = 115.15
Hi can someon help me how to answer this?
Btw I'm from Philippines
Answer:
Test 1
1.True
2.True
3.True
4.False
5.True
6.True
7.False
8.True
9.True
10.True
yung iba nasa pic
Part AFind the x- and y-components of the vector d⃗ = (4.0 km , 29 ∘ left of +y-axis).Express your answer using two significant figures. Enter the x and y components of the vector separated by a comma.d⃗ = km Part BFind the x- and y-components of the vector v⃗ = (2.0 cm/s , −x-direction).Express your answer using two significant figures. Enter the x and y components of the vector separated by a comma.v⃗ = cm/s Part CFind the x- and y-components of the vector a⃗ = (13 m/s2 , 36 ∘ left of −y-axis).Express your answer using two significant figures. Enter the x and y components of the vector separated by a comma.a⃗ x = m/s2
Solution :
Part A .
Given : The [tex]x[/tex] and [tex]y[/tex] components of the vector, d = [tex]\text{4 km 29}[/tex] degree left of [tex]y[/tex]-axis.
So the [tex]x[/tex] component is = -4 x sin (29°) = -1.939 km
[tex]y[/tex] component is = 4 x cos (29°) = 3.498 km
Part B
Given : The [tex]x[/tex] and [tex]y[/tex] components of the vector, [tex]\text{v = 2 cm/s}[/tex] , [tex]\text{-x direction}[/tex]
So the [tex]x[/tex] component is = -2 cm/s
[tex]y[/tex] component is = 0
Part C
Given : The [tex]x[/tex] and [tex]y[/tex] components of the vector, [tex]\text{a = 13 m/s, 36 degree}[/tex] left of [tex]y[/tex]-axis.
So the [tex]x[/tex] component is = -13 x sin (36°) = -7.6412 [tex]m/S^2[/tex]
[tex]y[/tex] component is = -13 x cos (36°) = -10.517 [tex]m/S^2[/tex]
The x- and y-components of the vectors is mathematically given as as follows for each Part respectively
x= -1.939 km, y= 3.498 km
x= -2 cm/s, 0
y=, x= -7.6412m/s^2, -10.517m/s^2
What are the x- and y-components of the vectors?
Question Parameters:
Generally, we follow a basic principle where
x component= Fsin\theta
y component= Fcos\theta
Therefore
For A
x component is
x= -4 x sin (29°)
x= -1.939 km
y component is
y= 4 x cos (29°)
y= 3.498 km
For B
x component is
x= -2 cm/s
y component is
y= 0
For C
x component is
x= -13 x sin (36°)
x= -7.6412m/s^2
y component is
y= -13 x cos (36°)
y= -10.517m/s^2
Read more about Cartession co ordinate
https://brainly.com/question/9410676
A tire is filled with air at 22oC to a gauge pressure of 240 kPa. After driving for some time, if the temperature of air inside the tire is 45oC, what fraction of the original volume of air must be removed to maintain the pressure at 240 kPa?
Answer:
7.8% of the original volume.
Explanation:
From the given information:
Temperature [tex]T_1[/tex] = 22° C = 273 + 22 = 295° C
Pressure [tex]P_1[/tex] = 240 kPa
Temperature [tex]T_2[/tex] = 45° C
At initial temperature and pressure:
Using the ideal gas equation:
[tex]P_1V_1 =nRT_1[/tex]
making V_1 (initial volume) the subject:
[tex]V_1 = \dfrac{nRT_1}{P_1}[/tex]
[tex]V_1 = \dfrac{nR*295}{240}[/tex]
Provided the pressure maintained its rate at 240 kPa, when the temperature reached 45° C, then:
the final volume [tex]V_2[/tex] can be computed as:
[tex]V_2 = \dfrac{nR*318}{240}[/tex]
Now, the change in the volume ΔV = V₂ - V₁
[tex]\Delta V = \dfrac{nR*318}{240}- \dfrac{nR*295}{240}[/tex]
[tex]\Delta V = \dfrac{23nR}{240}[/tex]
∴
The required fraction of the volume of air to keep up the pressure at (240) kPa can be computed as:
[tex]= \dfrac{\dfrac{23nR}{240}}{ \dfrac{295nR}{240}}[/tex]
[tex]= {\dfrac{23nR}{240}} \times { \dfrac{240}{295nR}}[/tex]
[tex]= 0.078[/tex]
= 7.8% of the original volume.