Answer:
1
Step-by-step explanation:
Let's ignore the absolute value signs for a moment.
We have the expression [tex]10-11[/tex]. We know that if we subtract 10 from 10 we get 0, so if we subtract 11 from 10 we must get -1.
However, there is an absolute value sign. This means that whatever number is inside it has to be converted to a positive number.
-1 as a positive number is +1, or just 1.
Hope this helped!
Find the common ratio for the geometric sequence for which [tex]a_1[/tex]=3 and [tex]a_5[/tex]=48. A. -3 B. -2 C. 3 D. 2
Answer:
An= A1 * r^n-1
A5= 3 * r^5-1
48= 3*r^4
48÷3=r^4
16=r^4
r=
[tex] \sqrt[4]{16} [/tex]
r=2
The answer is D. 2
Espero que te sirva
hsじぇいrんふぉそ具jんじょおlっっっkjか、
Let f (x) = |2). Write a function g whose graph is a vertical shrink by a factor of
followed by a translation 2 units up of the graph of f.
Answer:
This is poorly written, so i will answer it as it was:
"Let f (x) = |2). Write a function g(x) whose graph is a vertical shrink by a factor of A, followed by a translation 2 units up of the graph of f."
I don't really know what you do mean by I2), so i will answer it in a general way.
First, we do a vertical shrink of factor A.
A must be a number smaller than one and larger than zero., then if g(x) is a vertical shrink of factor A of the graph of f(x), we have that:
g(x) = A*f(x)
As 0 < A < 1
We will have that the graph of g(x) is a vertical compression of the graph of f(x)
Now we do a vertical shift of 2 units up.
A general vertical shift of N units up is written as:
g(x) = f(x) + N
Where N is a positive number.
So in our case, we have:
g(x) = A*f(x) + 2.
Where you will need to replace the values of A and f(x) depending on what the actual question says,
Susan Johnson earns a yearly salary of $83,280. a. How much would Susan be paid if she were
paid monthly? b. How much would she be paid if she were paid bi-weekly?
Which of the following shows the correct solution steps and solution to 7x-4= -18?
Answer:
x = -2
Step-by-step explanation:
To solve for x always get x on one side
First add 4 on each side, 4 + 7x - 4 = -18 + 4
Next subtract 18 from 4, making it -14 7x = -14
Now divide 7 on each side, x = -2
Help wanted ill do brainliest!!
Answer:
x=-1
Step-by-step explanation:
0.5 ( 5 - 7x ) = 8 - ( 4x + 6 )
- Distribute 0.5 by 5 and -7x
2.5 - 3.5x = 8 - ( 4x + 6 )
Second- Distribute the invisible one into 4x and 6
2.5 - 3.5x = 8 - 4x - 6
- Combine like terms: Subtract 6 from 8
2.5-3.5x= - 4x + 2
-Add 4x from both sides of the equation
2.5 + 0.5x = 2
-Subtract 2.5 from both sides of the equation
0.5x = 2- 2.5
0.5x = -0.5
-Then divide each side by 0.5x
0.5x = -0.5
0.5 0.5
-Cancel the common factor of 0.5
x = - 0.5
0.5
-Divide -0.5 by 0.5
X = -1
In circle O, AC and BD are diameters. Circle O is shown. Line segments B D and A C are diameters. A radius is drawn to cut angle C O C into 2 equal angle measures of x. Angles A O C and B O C also have angle measure x. What is mArc A B?
Answer:
120
Step-by-step explanation:
Got it right on the assigment
Answer:
c. 120
Step-by-step explanation:
Solve the equation. Do not put "x = "in your answer, just type the number.
Ex: -8 3x - 5 = 13*
Answer:
6
Step-by-step explanation:
3x - 5 = 13
3x = 18 (Add 5 to both sides; 13 + 5 = 18)
x = 6 (Divide both sides by 3; 18 / 3 = 6)
what is the image (-9,-2) after a reflection over the x-axis ?
Answer:
(-9,2)
Step-by-step explanation:
The rule for reflecting over the x axis is
(x,y)→(x,−y)
(-9, -2) becomes ( -9, - -2) = (-9,2)
Answer:
(-9,2)
Step-by-step explanation:
It will be -9,2 because when you reflect across x axis you change the y axis not the x axis because if you imagine it it works like that
How many triangles exist with the given side lengths? 2mm,6mm,10mm
Answer:
Zero
Step-by-step explanation:
2+6=8 which means it can't be. It has to be a length higher than 10
Find all values of $x$ such that \[\frac{2x}{x + 2} = -\frac{6}{x + 4}.\]If you find more than one value, then list your solutions, separated by commas.
Greetings from Brasil...
2X/(X + 2) = 6/(X + 4)
2X(X + 4) = 6(X + 2)
2X² + 2X - 12 = 0 ÷2
2X²/2 + 2X/2 - 12/2 = 0/2
X² + X - 6 = 0Δ = 25
X' = 2X'' = - 3S = {-3, 2}
By using factorization, [tex]\frac{2x}{x+2} =\frac{6}{x+4}[/tex] , values of x are -2, 3.
What is factorization?Factorization can be defined as the process of breaking down a number into smaller numbers which when multiplied together arrive at the original number. These numbers are broken down into factors or divisors.
Given
[tex]\frac{2x}{x+2} =\frac{6}{x+4}[/tex]
⇒ 2x(x + 4) = 6(x + 2)
⇒ [tex]2x^{2} +8x = 6x + 12[/tex]
⇒ [tex]2x^{2} +8x-6x-12=0[/tex]
⇒ [tex]2x^{2} +2x -12=0[/tex]
Divide above equation by 2, we get
⇒ [tex]x^{2} +x -6=0[/tex]
⇒ [tex]x^{2} +2x-3x-6=0[/tex]
⇒ [tex]x(x+2)-3(x+2)=0[/tex]
⇒ [tex](x+2)(x-3)=0[/tex]
⇒ x = -2, 3
By using factorization, [tex]\frac{2x}{x+2} =\frac{6}{x+4}[/tex] , values of x are -2, 3.
Find out more information about factorization here
https://brainly.com/question/1863222
#SPJ2
Two stores sell the same computer for the same original price. Store A advertises that the computer is on sale for 25% off the original price. Store B advertises that it is reducing the computer’s price by $180. When Brittany compares the sale prices of the computer in both stores, she concludes that the sale prices are equal. Let p represent the computer’s original price. Which equation models this situation?
Answer:
p= 25/100 = 180/x
Step-by-step explanation:
In order to find the computer's original price, you must use the equation p= 25/100 = 180/x and solve for x.
Answer:
0.75p=p-180
Step-by-step explanation:
0.75p=p-180 is your answer
Dr. Potter provides vaccinations against polio and measles. Each polio vaccination consists of 6 doses, and each measles vaccination consists of 3 doses. Last year, Dr. Potter gave a total of 60 vaccinations that consisted of a total of 225 doses. How many more measles vaccines did Mr. Potter give than polio? Show All Work !!
Answer:
The number of measles vaccines that Dr. Potter give than polio vaccines is 30
Step-by-step explanation:
The parameters given are;
The number of doses given in a polio vaccine = 6 doses
The number of doses given in a measles vaccine = 3 doses
The number of vaccinations given by Dr. Potter last year = 60 vaccinations
The number of doses given in the 60 vaccinations = 225 doses
Let the number of polio vaccine given last year by Dr. Potter = x
Let the number of measles vaccine given last year by Dr. Potter = y
Therefore, we have;
6 × x + 3 × y = 225.......................(1)
x + y = 60.......................................(2)
From equation (2), we have;
x = 60 - y
Substituting the derived value for x in equation (1), we get;
6 × x + 3 × y = 225
6 × (60 - y) + 3 × y = 225
360 - 6·y + 3·y = 225
360 - 225 = 6·y - 3·y
135 = 3·y
y = 45
x = 60 - y = 60 - 45 = 15
Therefore;
The number of polio vaccine given last year by Dr. Potter = 15
The number of measles vaccine given last year by Dr. Potter = 45
The number of measles vaccines that Dr. Potter give than polio vaccines = 45 - 15 = 30 vaccines.
The number of measles vaccines that Dr. Potter give than polio vaccines = 30 vaccines.
The quotient of x^2+x-6/x^2-6x+5*x^2+2x-3/x^2-7x+10 has ___ in the numerator and ______ in the denominator.
Answer:
So the quotient of [tex]\frac{x^{2} + x - 6}{x^{2} -6x + 5} X \frac{x^{2} + 2x - 3}{x^{2} -7x + 10}[/tex] has (x + 3)² in the numerator and (x + 5)² in the denominator.
Step-by-step explanation:
[tex]\frac{x^{2} + x - 6}{x^{2} -6x + 5} X \frac{x^{2} + 2x - 3}{x^{2} -7x + 10}[/tex]
Factorizing the expressions we have
[tex]\frac{x^{2} + 3x -2x - 6}{x^{2} -x - 5x + 5} X \frac{x^{2} + 3x - x - 3}{x^{2} -2x -5x + 10}[/tex]
[tex]\frac{x(x + 3)- 2(x + 3)}{x(x -1) - 5(x - 1)} X \frac{x(x + 3) - 1(x + 3)}{x(x - 2) - 5(x - 2)}[/tex]
[tex]\frac{(x + 3)(x - 2)}{(x - 5)(x - 1)}X\frac{(x + 3)(x - 1)}{(x - 2)(x - 5)}[/tex]
Cancelling out the like factors, (x -1) and (x - 2), we have
[tex]\frac{(x + 3)(x + 3)}{(x - 5)(x - 5)}[/tex]
= [tex]\frac{(x + 3)^{2} }{(x + 5)^{2} }[/tex]
So the quotient of [tex]\frac{x^{2} + x - 6}{x^{2} -6x + 5} X \frac{x^{2} + 2x - 3}{x^{2} -7x + 10}[/tex] has (x + 3)² in the numerator and (x + 5)² in the denominator.
The projected worth (in millions of dollars) of a large company is modeled by the equation w = 206(1.1) t. The variable t represents the number of years since 2000. What is the projected annual percent of growth, and what should the company be worth in 2011? A. 10%; $534.31 million B. 11%; $646.52 million C. 10%; $587.74 million D. 11%; $226.60 million
Answer:
Hey There!! The Correct answer is: The equation is w = 241(1.06)t
And here variable t represents the number of years since 2000.
In 2001 means t=2001 -2000 = 1
So we plug 1 for t in the given expression , that is w = 241(1.06)1 = 241 * 1.06 = 255.46
Therefore in 2001, it should be worth to 255.46.
And in the given expression 1.06=1 +0.06, where 0.06 is the annual percent of growth that is 6 % .
Hope It Helped!~ ♡
ItsNobody~ ☆
The projected annual percent of growth is 10% and the company worth in 2011 will be $587.74 millions. Then the correct option is C.
What is an exponent?Consider the function:
y = a (1 ± r) ˣ
Where x is the number of times this growth/decay occurs, a = initial amount, and r = fraction by which this growth/decay occurs.
If there is a plus sign, then there is exponential growth happening by r fraction or 100r %.
If there is a minus sign, then there is exponential decay happening by r fraction or 100r %.
The projected worth (in millions of dollars) of a large company is modeled by the equation is given as,
[tex]\rm w = 206\times (1.10)^t\\\\w = 206\times (1+0.10)^t[/tex]
Then the projected annual percent of growth is 10%.
The variable t represents the number of years since 2000.
Then the company worth in 2011 will be
w = 206 × 1.1¹¹
w = $587.74 millions
The projected annual percent of growth is 10% and the company worth in 2011 will be $587.74 millions.
Then the correct option is C.
More about the exponent link is given below.
https://brainly.com/question/5497425
#SPJ2
what is mean absolute deviation (MAD) and how do I find it?
Steps to find MAD:
Step 1. Calculate mean([tex]\overline{x}[/tex]) of the data using formula: [tex]\overline{x}=\dfrac{\sum x}{n}[/tex] , where x denotes data points and n is the number of data points.
Step 2. Calculate distance of each data point from mean :
Distance = [tex]|x-\overline{x}|[/tex]
Step 3. Divide distance of each data point from mean by n:
MAD = [tex]\dfrac{\sum |x-\overline{x}|}{n}[/tex] , which is the final computation to find MAD.
What are the solutions to the equation (2x – 5)(3x – 1) = 0? x = or x = 3 x = x = 5 or x = 1
Answer:
x = 5/2 x=1/3
Step-by-step explanation:
(2x – 5)(3x – 1) = 0
Using the zero product property
2x-5 =0 3x-1 =0
2x=5 3x =1
x = 5/2 x=1/3
Answer:
C on edg 2021
Step-by-step explanation:
In a naval engagement, one-third of the fleet was captured, one-sixth was sunk, and two ships were destroyed by fire. One-seventh of the surviving ships were lost in a storm after the battle. Finally, the twenty-four remaining ships sailed home. How many ships were in the fleet before the engagement?
Answer:
60 ships.
Step-by-step explanation:
Let the total number of ships in the naval fleet be represented by x
One-third of the fleet was captured = 1/3x
One-sixth was sunk = 1/6x
Two ships were destroyed by fire = 2
Let surviving ships be represented by y
One-seventh of the surviving ships were lost in a storm after the battle = 1/7y
Finally, the twenty-four remaining ships sailed home
The 24 remaining ships that sailed home =
y - 1/7y = 6/7y of the surviving fleet sailed home.
Hence
24 = 6/7y
24 = 6y/7
24 × 7/ 6
y = 168/6
y = 28
Therefore, total number of ships that survived is 28.
Surviving ships lost in the storm = 1/7y = 1/7 × 28 = 4
Total number of ships in the fleet(x) =
x = 1/3x + 1/6x + 2 + 28
Collect like terms
x - (1/3x + 1/6x) = 30
x - (1/2x) = 30
1/2x = 30
x = 30 ÷ 1/2
x = 30 × 2
x = 60
Therefore, ships that were in the fleet before the engagement were 60 ships.
A baker sold apples pies for $10 and blueberry pies for$14. One Saturday they sold a total of 39 pies and collected a total of$458. How many apples pies did they sell and how many blueberry pies did they sell
The total number of apple pies is 22 and the total number of blueberry pies is 17.
What is an equation?An equation is an expression that shows the relationship between two or more numbers and variables.
Given that baker sold apples pies for $10 and blueberry pies for$14. One Saturday they sold a total of 39 pies and collected a total of $458.
Asumme the total number of apple pies be 'x' and the total number of blueberry pies be 'y'.
The linear equation that represents the total number of pies is:
x + y = 39
x = 39- y --- (1)
The linear equation that represents the total amount collected is:
10x + 14y = 458--- (2)
Substitute the value of 'x' in equation (2).
10(39- y) + 14y = 458
y = 17
Then Substitute the value of 'y' in the equation (1).
x = 39 - 17
x = 22
Learn more about equations here;
https://brainly.com/question/25180086
#SPJ5
Helppppp!!!! Thank you
Greetings from Brasil...
In a triangle the sum of the internal angles is 180 °.... Thus,
Ô = 180 - 30
Ô = 60
The desired area is the area of the rectangle triangle, minus the area of the circular sector whose angle 60
A1 = area of the rectangle triangle
TG B = OA/AB
AB = OA / TG B
AB = 6 / TG 30
AB = 6√3
A1 = (AB . OA)/2
A1 = (6√3 . 6)/2
A1 = 18√3A2 = area of the circular sector
(rule of 3)
º area
360 ------------ πR²
60 ------------ X
X = 60πR²/360
X = 6π
So,
A2 = 6πThen the area shaded is:
A = A1 - A2
A = 18√3 - 6πWhat is the value of w? inscribed angles (Image down below)
Answer:
w = 100°
Step-by-step explanation:
Opposite angles in an inscribed quadrilateral in a circle are supplementary.
Therefore, [tex] w + 80 = 180 [/tex]
Subtract 80 from both sides
[tex] w + 80 - 80 = 180 - 80 [/tex]
[tex] w = 100 [/tex]
The value of w = 100°
How do I find DG. A. 3 B. -7 c. 16 d. 13
Answer:
x = -7
Step-by-step explanation:
DE + EF + FG = DG
2x+17 + 8+2 = x+20
Combine like terms
2x+ 27 = x+20
Subtract x from each side
2x+27-x = x+20-x
x+27 = 20
Subtract 27 from each side
x+27-27 = 20-27
x = -7
Write the equation of a circle with a center at (12, 6) and a radius of 6.
Answer:
(x-12)² + (y-6)² = 36 (Option C)
Step-by-step explanation:
use circle formula
(x-h)² + (y-k)²= r²
h= 12 and k= 6 and r= 6
(x-12)² + (y-6)² = 6²
6 squared = 36 (6·6)
(x-12)² + (y-6)² = 36
PLEASE help me solve this question! No nonsense answers please!
Answer:
[tex]\boxed{\sf Option \ 1}[/tex]
Step-by-step explanation:
The profit is revenue (R ) - costs (C ).
Subtract the expression of costs (C ) from revenue (R ).
[tex]10x-0.01x^2-(2x+100)[/tex]
Distribute negative sign.
[tex]10x-0.01x^2-2x-100[/tex]
Combine like terms.
[tex]8x-0.01x^2-100[/tex]
The first option has a positive 100, which is wrong.
The rest options are right, when we expand brackets the result is same.
PLEASE help me with this question!!! REALLY URGENT!
Answer:
The third table is the correct answer
Step-by-step explanation:
Here in this question, we are concerned with determine which of the tables correctly represents what an exponential function is.
An exponential function is a function of the form;
y = x^n
where the independent variable x in this case is raised to a certain exponent so as to give the results on the dependent variable axis (y-axis)
In the table, we can see that we have 2 segments, one that contains digits 1,2 and so on while the other contains purely the powers of 10.
Now, let’s set up an exponential outlook;
y = 10^x
So we have;
1 = 10^0
10 = 10^1
1/10 = 10^-1
1000 = 10^3
1/100 = 10^-2
We can clearly see here that we have an increase in the value of y, depending on the value of the exponent.
However it is only this table that responds to this successive correctness as the other tables in the answer do have a point where they fail.
For example;
10^-2 is not 10 which makes the fourth table wrong
10^4 is not 100 which makes the first table wrong
we have same error on second table too
Estimate. Then determine the area. Please please please, need help!
Estimate:
2.3 rounds down to 2
So after multiplying by 2, the area is estimated to be 4 cm squared.
Actual Area:
2.3 x 2 = 4.6
The actual area of the shape is 4.6 cm squared.
Hope this helped!
Answer:
4.6
Step-by-step explanation:
three people alice , ben , calvin, are conversing at a taxi stand since taxis are the only ride service in this town. although they havent met before ,they realize that all are going the same route to get desire destination. alice destination is 20 miles away , ben destination 30 miles away and calvins destination 40 miles away , the taxi costs 2 dollars per mile with tip included regardless of the number of passengers. how much should each person pay if the three share a cab to their respective destination
Answer:
Alice will have to pay $13.33
Ben will have to pay $23.33
Kelvin will have to pay $43.33
Step-by-step explanation:
Given that
Alice destination is 20 miles away
Ben destination is 30 miles away
Calvin destination is 40 miles away.
For a mile, taxi costs 2 dollars.
To find:
How much each person has to pay if they share the same taxi to their respective destinations?
Solution:
For the first 20 miles, the taxi will be shared by all 3 of them.
Charges for 20 miles = 20 [tex]\times[/tex] 2 = $40
This $40 will be shared among all 3.
Each will pay = [tex]\frac{40}{3} = \$13.33[/tex]
Charges for Alice = $13.33
Charges for Ben = $13.33
Charges for Calvin = $13.33
For the next 10 miles, the taxi will be shared by Ben and Calvin.
Charges for 10 miles = 10 [tex]\times[/tex] 2 = $20
This $20 will be shared between Ben and Calvin.
Each will pay = [tex]\frac{20}{2} = \$10[/tex]
Charges for Alice = $13.33
Charges for Ben = $13.33 + 10 = $23.33
Charges for Calvin = $13.33 + 10 = $23.33
For the next 10 miles, Calvin travels alone.
Charges for 10 miles = 10 [tex]\times[/tex] 2 = $20
This $20 will be paid by Calvin alone.
Charges for Alice = $13.33
Charges for Ben = $23.33
Charges for Calvin = $23.33 + 20 = $43.33
Solve: 5x2 + 25x = 0
Answer:
x = -0.4
x = -(2/5)
Answer:
x = ± √5
Step-by-step explanation:
Please indicate exponentiation by using the symbol " ^ ":
5x^2 + 25x = 0
Divide all three terms by 5. We get:
x^2 + 5 = 0, or x^2 = -5
Then x = ± √5
use the formula S = 40,000 (1.06)t to calculate your salary after 4 years. Round your answer to the nearest dollar.
a. $42,400
b. $44,944
c. $47,641
d. $50,499
Answer:
d. $50,499
Step-by-step explanation:
Given:
S = 40,000 (1.06)^t
Where,
t=4 years
S=40,000(1.06)^4
=40,000(1.26247696)
=50,499.0784
To the nearest dollar
S=$50,499
The answer is d. $50,499
If you're good at exact values of trig ratios pea shell me with 13a
It is an equilateral triangle so its angles are equal 60°. From the definition, we know that:
[tex]\sin60^\circ=\dfrac{h}{4}[/tex]
and
[tex]\sin60^\circ=\dfrac{\sqrt{3}}{2}[/tex]
so
[tex]\dfrac{\sqrt{3}}{2}=\dfrac{h}{4}\quad \Big|\cdot4\\\\\\h=\dfrac{4\cdot\sqrt{3}}{2}\\\\\boxed{h=2\sqrt{3}}\\[/tex]
Answer:
h = √12
Step-by-step explanation:
use the Pythagorean
h² = 4² - 2²
h² = 16 - 4
h = √12
In 5 hours a small plane can travel downwind for 4000 kilometers
or upward 3000 kilometers. Find the speed of this plane with no wind and the speed of the wind current.
write as an equation
Answer:
the speed of the plane with no wind is 700 km/h and the speed of the wind is 100 km/h
Step-by-step explanation:
Let V be the speed of the plane and v the speed of the wind. Down current, they are in opposite directions, and the plane travels a a distance of 4000 km in 5 hours,so
5(V - v) = 4000
V - v = 800 (1)
For upwind movement, since the plane travels 3000 km in 5 hours, so
5(V + v) = 3000
V + v = 600 (2)
adding equations (1) and (2), we have
V - v = 800
+
V + v = 600
2V = 1400
V = 1400/2 = 700 km/h
subtracting equations (2) from (1), we have
V - v = 800
-
V + v = 600
-2v = 200
v = -200/2 = -100 km/h
So, the speed of the plane with no wind is 700 km/h and the speed of the wind is 100 km/h