1. You are playing with a jump rope that is tied at both ends. You untie one end, hold it taut and wiggle the end up and down sinusoidally with frequency 2.00Hz and amplitude 0.075m. At time t=0, the end has a maximum positive displacement and is instantaneously at rest. Assume no wave bounces back from the far end to change the pattern. What is the equation for the displacement of the wave? What is the displacement at a point 3.00m from the end .

Answers

Answer 1

Answer:

[tex]f(x=3.00m)=0.075mcos(\frac{2\pi(2.00Hz)}{v}(3.00m))[/tex]

Explanation:

To find the equation of the wave you use the general equation for a wave, given by:

[tex]f(x)=Acos(k x-\omega t)[/tex]

A: amplitude of the wave = 0.075m

k: wave number

you select a cosine function because for x=0 and t= 0 you get a maximum displacement.

To find the displacement of the wave for x=0 you can consider that the form of the wave is independent of time t.

Then, you calculate k:

[tex]k=\frac{\omega}{v}=\frac{2\pi f}{v}[/tex]

Thus, you need the value of the speed of the wave (you only have the frequency f), in order to calculate f(x), for x=3.00m:

[tex]f(x=3.00m)=0.075mcos(\frac{2\pi(2.00Hz)}{v}(3.00m))[/tex]


Related Questions

A light bulb dissipates 100 Watts of power when it is supplied a voltage of 220 volts.
a) What is the current flowing through this light bulb?
b) What is the resistance of the light bulb?

Answers

Given Information:

Power = P = 100 Watts

Voltage = V = 220 Volts

Required Information:

a) Current = I = ?

b) Resistance = R = ?

Answer:

a) Current = I = 0.4545 A

b) Resistance = R = 484 Ω

Explanation:

According to the Ohm’s law, the power dissipated in the light bulb is given by

[tex]P = VI[/tex]

Where V is the voltage across the light bulb, I is the current flowing through the light bulb and P is the power dissipated in the light bulb.

Re-arranging the above equation for current I yields,

[tex]I = \frac{P}{V} \\\\I = \frac{100}{220} \\\\I = 0.4545 \: A \\\\[/tex]

Therefore, 0.4545 A current is flowing through the light bulb.

According to the Ohm’s law, the voltage across the light bulb is given by

[tex]V = IR[/tex]

Where V is the voltage across the light bulb, I is the current flowing through the light bulb and R is the resistance of the light bulb.

Re-arranging the above equation for resistance R yields,

[tex]R = \frac{V}{I} \\\\R = \frac{220}{0.4545} \\\\R = 484 \: \Omega[/tex]

Therefore, the resistance of the bulb is 484 Ω

Answer:

bulb will burn out!

Explanation:

Calculate potential energy of a 5 kg object sitting on 3 meter ledge

Answers

Pe=5*9.8*3=147 joules

Answer:147 joules

Explanation:

Mass=m=5kg

Acceleration due to gravity=g=9.8m/s^2

Height=h=3 meter

Potential energy=m x g x h

Potential energy=5 x 9.8 x 3

Potential energy=147 joules

A particle is projected at an angle 60 degrees to the horizontal with a speed of 20m/s. (i) calculate total time of flight of the particle. (i) speed of the particle at its maximum height

Answers

Answer:

Time of flight=3.5 seconds

Speed at maximum height is 0

Explanation:

Φ=60°

initial velocity=u=20m/s

Acceleration due to gravity=g=9.8 m/s^2

Total time of flight=T

Final speed=v

question 1:

T=(2 x u x sinΦ)/g

T=(2 x 20 x sin60)/9.8

T=(2 x 20 x 0.8660)/9.8

T=34.64/9.8

T=3.5 seconds

Question 2

Speed at maximum height is 0

Consider a circular vertical loop-the-loop on a roller coaster. A car coasts without power around the loop. Determine the difference between the normal force exerted by the car on a passenger with a mass of mm at the top of the loop and the normal force exerted by the car on her at the bottom of the loop. Express your answer in terms of mmm and the acceleration due to gravity ggg.

Answers

Answer:

Explanation:

Let v₁ and v₂ be velocities at lowest and topmost position . Let r be the radius of the circle .

Let N₁ and N₂ be the normal reaction force .

At the top position

centripetal force = N₂ + mg ;  so

N₂ + mg  = m v₂² / r

At the bottom  position

centripetal force = N₁ - mg ;  so

N₁ - mg  = m v₁² / r

subtracting these two equations

N₁ - mg - N₂ - mg = m v₁² / r  - m v₂² / r

N₁ - N₂ - 2mg = 1/r (m v₁²   - m v₂²  )

N₁ - N₂ - 2mg = 1/r x mg x 2r  ( loss of potential energy = gain of kinetic energy )

N₁ - N₂ =  2mg +  2mg

= 4 mg .

A long solid conducting cylinder with radius a = 12 cm carries current I1 = 5 A going into the page. This current is distributed uniformly over the cross section of the cylinder. A cylindrical shell with radius b = 21 cm is concentric with the solid cylinder and carries a current I2 = 3 A coming out of the page. 1)Calculate the y component of the magnetic field By at point P, which lies on the x axis a distance r = 41 cm from the center of the cylinders.

Answers

Answer:

Explanation:

We shall use Ampere's circuital law to find magnetic field at required point.

The point is outside the circumference of two given wires so whole current will be accounted for .

Ampere's circuital law

B = ∫ Bdl = μ₀ I

line integral will be over circular path of radius r = 41 cm .

Total current  I  = 5A -3A = 2A .

∫ Bdl = μ₀ I

2π r B = μ₀ I

2π x .41  B = 4π x 10⁻⁷ x 2

B = 2 x 10⁻⁷ x 2 / .41

= 9.75 x 10⁻⁷ T . It will be along - ve Y - direction.

3. The current in a flashlight powered by 4.5 Volts is 0.5 A. What is the power delivered to the flashlight?
4.If the flashlight in the previous problem is left on for 3 minutes, how much electric energy is delivered to the bulb?

Answers

Answer:

Question 3: 2.25 watts

Question 4: 405 joules

Explanation:

question 3:

Current =0.5 amps

Voltage =4.5 volts

Power= current x voltage

Power=0.5 x 4.5

power=2.25 watts

Question 4

Current =0.5 amps

Voltage =4.5v

Time=3 minutes

Time =3x60

Time =180 seconds

Energy=current x voltage x time

Energy =0.5 x 4.5 x 180

Energy =405 joules

What types of mediums are involved in the energy transfer

Answers

Answer:

In electromagnetic waves, energy is transferred through vibrations of electric and magnetic fields. In sound waves, energy is transferred through vibration of air particles or particles of a solid through which the sound travels. In water waves, energy is transferred through the vibration of the water particles.

What must x be so that the handle end of the bat remains at rest as the bat begins to move? (Hint: Consider the motion of the center of mass and the rotation about the center of mass. Find x so that these two motions combine to give v=0 for the end of the bat just after the collision. Also, note that integration of equation ∑τ⃗ =dL⃗ dt gives ΔL=∫t1t2(∑τ)dt. )

Answers

Complete Question

The complete question is shown on the first uploaded image

Answer:

Explanation:

From the question we are told that

     The mass of the bat is [tex]m_b = 0.800 \ kg[/tex]

      The bat length is  [tex]L_b = 0.900 \ m[/tex]

      The distance of the bat's center of mass to the handle end is  [tex]z_c = 0.600 \ m[/tex]

      The moment of inertia of the bat is    [tex]I = 0.0530 \ kg \cdot m^2[/tex]

The objective of the solution is to find  x   which is the distance from the handle of the bat to the point where the baseball hit the bat

Generally the velocity change at the end of the bat is mathematically represented as

         [tex]\Delta v_e = \Delta v_c - \Delta w* z_c[/tex]

         Where  [tex]\Delta v_c[/tex] is the velocity change at the center of the bat  which is mathematically represented as

                [tex]\Delta v_c = \frac{Impulse}{m_b }[/tex]

We are told that the impulse is  J so

              [tex]\Delta v_c = \frac{J}{m_b }[/tex]

And   [tex]\Delta w[/tex] is the change in angular velocity which is mathematically represented as

         [tex]\Delta w = \frac{J (z -z_c)}{I}[/tex]

Now we have that

           [tex]\Delta v_e = \frac{J}{m_b } - [\frac{J (x- z_c)}{I} ] * z_c[/tex]

Before a swing when the bat is at rest the velocity change a the end of the bat handle is zero  and the impulse will be  1

   So  

            [tex]0 = \frac{1}{m_b } - [\frac{J (x- z_c)}{I} ] * z_c[/tex]

=>           [tex]x = \frac{I}{m_b z_c} + m_b[/tex]

substituting values

            [tex]x = \frac{0.530}{0.800 * 0.600} + 0.600[/tex]

           [tex]x = 0.710 \ m[/tex]

                     

Block A, with a mass of 4 kg, is moving with a speed of 2 m/s while Block B, with a mass of 8.4 kg, is moving in the opposite direction with a speed of 6.1 m/s. The center of mass of the two block system is moving with a velocity of ____ m/s. Round your answer to the nearest tenth. Assume Block A is moving in the positive direction.

Answers

Answer:

The center of mass move with the velocity of -3.487 m/s.

Explanation:

Given values of block A.

Mass of block A, (M1) = 4 kg

Speed of block A, (V1) = 2 m/s

Given values of block B.

 Mass of block B, (M2) = 8.4 kg

Speed of block B, (V2) = -6.1 m/s

Below is the formula to find the velocity of center of mass.

[tex]Velocity = \frac{M1V1 + M2V2}{M1 + M2} \\[/tex]

[tex]= \frac{4 \times 2 + 8.4 \times (-6.1) }{4 + 8.4} \\[/tex]

[tex]= \frac{- 43.24}{12.4}\\[/tex]

[tex]= - 3.487 m/s[/tex]

Which term BEST describes the movement of air from the ocean toward the land in the daytime? (AKS 4b DOK 1) *
1 point
Sea breeze
Land Breeze
Valley Breeze
Current Breeze

Answers

Answer:

Option A, Sea Breeze

Explanation:

Ssea breeze is a wind that blows from the ocean or any water body to the nearby land mass. This breeze is cold as compared to the air on land. The water in water bodies has high specific heat capacity and hence takes longer time to cool as compared to the surrounding objects. The warmer air over the land rises upward thereby reducing the pressure on land and hence the sea breeze starts flowing from region of high pressure (i.e above the water body) towards the low pressure region that is the land.

Hence, option A is correct

Exercise should challenge your body and be at a greater intensity than your usual bif daily activity. Discuss

Answers

Answer:

A fan pushes hot air out of a vent and into a room. The hot air displaces cold air in the room, causing the cold air to move closer to the floor.

The hot air displacing the cold air is an example of  transfer by

Explanation:

The main component of all computer memory is

Answers

Hi!

The main component of all computer memory is RAM.

Hope this helps !

Answer: R.A.M

Explanation:

what do hydroelectric plants use to generate electrical energy?

Answers

Answer:

A.  falling water

Explanation:

I got it right on Edgenuity. Good luck on your quiz.

In hydroelectric plants, water falls on turbine and makes it rotate. In generator, this mechanical energy transforms into electrical energy.

What is hydroelectric power?

Hydroelectric power is generated by turbines that turn the potential energy of falling or swiftly flowing water into mechanical energy, which is then used to power generators. The most popular renewable energy source in the early 21st century was hydroelectricity, which in 2019 accounted for more than 18% of the world's total power producing capacity.

Water is gathered or stored at a higher elevation during the production of hydroelectric power and then transported through substantial pipes or tunnels (penstocks) to a lower elevation; the difference between these two elevations is referred to as the head. The falling water turns turbines as it nears the bottom of the pipelines. In turn, the turbines power generators, which transfer the mechanical energy of the turbines into electricity.

Learn more about  hydroelectric power here:

https://brainly.com/question/15228003

#SPJ2

You could use an analytical or triple beam balance to determine a ___ called ____
A)
physical property; mass.
B)
chemical property, mass.
C)
physical property; weight.
D)
physical property; density.

Answers

Answer:

a and b are the correct answers

Explanation:

Answer:

A)  physical property; mass.

Explanation:

took the test

A 200.0 g block rests on a frictionless, horizontal surface. It is pressed against a horizontal spring with spring constant 4500.0 N/m (assume that the spring is massless). The block is held in position such that the spring is compressed 4.00 cm shorter than its undisturbed length. The block is suddenly released and allowed to slide away on the frictionless surface. Find the speed the block will be traveling when it leaves the spring.

Answers

Answer:

 6 m/s

Explanation:

Given that :

mass of the block   m =  200.0 g  = 200 × 10⁻³ kg

the horizontal spring constant   k  =  4500.0 N/m

position of the block (distance x) = 4.00 cm  = 0.04 m

To determine the speed the block will be traveling when it leaves the spring; we applying the  work done on the spring as it is stretched (or compressed) with the kinetic energy.

i.e [tex]\frac{1}{2} kx^2 = \frac{1}{2} mv^2[/tex]

[tex]kx^2 = mv^2[/tex]

[tex]4500* 0.04^2 = 200*10^{-3} *v^2[/tex]

[tex]7.2 =200*10^{-3}*v^{2}[/tex]

[tex]v^{2} =\frac{7.2}{200*10^{-3}}[/tex]

[tex]v =\sqrt{\frac{7.2}{200*10^{-3}}}[/tex]

v = 6 m/s

Hence,the speed the block will be traveling when it leaves the spring is  6 m/s

Part A - At what angle does it leave?

Part B - At what distance x does it exit the field?

Answers

Answer:

Total internal reflection (TIR) is the phenomenon that involves the reflection of all the incident light off the boundary. TIR only takes place when both of the following two conditions are met: the light is in the more dense medium and approaching the less dense medium.

Explanation: Hope i helped!!!

The strength of the force of friction depends on which two factors?

Answers

Answer:

coefficient of friction (μ) and normal force (N)

Answer: How hard the surfaces push together and the types of surfaces involved

Explanation:

A Texas cockroach of mass 0.157 kg runs counterclockwise around the rim of a lazy Susan (a circular disk mounted on a vertical axle) that has a radius 14.9 cm, rotational inertia 5.92 x 10-3 kg·m2, and frictionless bearings. The cockroach's speed (relative to the ground) is 2.92 m/s, and the lazy Susan turns clockwise with angular velocity ω0 = 3.89 rad/s. The cockroach finds a bread crumb on the rim and, of course, stops. (a) What is the angular speed of the lazy Susan after the cockroach stops? (b) Is mechanical energy conserved as it stops?

Answers

Answer:

-7.23 rad/s

Explanation:

Given that

Mass of the cockroach, m = 0.157 kg

Radius of the disk, r = 14.9 cm = 0.149 m

Rotational Inertia, I = 5.92*10^-3 kgm²

Speed of the cockroach, v = 2.92 m/s

Angular velocity of the rim, w = 3.89 rad/s

The initial angular momentum of rim is

Iw = 5.92*10^-3 * 3.89

Iw = 2.3*10^-2 kgm²/s

The initial angular momentum of cockroach about the axle of the disk is

L = -mvr

L = -0.157 * 2.92 * 0.149

L = -0.068 kgm²/s

This means that we can get the initial angular momentum of the system by summing both together

2.3*10^-2 + -0.068

L' = -0.045 kgm²/s

After the cockroach stops, the total inertia of the spinning disk is

I(f) = I + mr²

I(f) = 5.92*10^-3 + 0.157 * 0.149²

I(f) = 5.92*10^-3 + 3.49*10^-3

I(f) = 9.41*10^-3 kgm²

Final angular momentum of the disk is

L'' = I(f).w(f)

L''= 9.41*10^-3w(f)

Using the conservation of total angular momentum, we have

-0.068 = 9.41*10^-3w(f) + 0

w(f) = -0.068 / 9.41*10^-3

w(f) = -7.23 rad/s

Therefore, the speed of the lazy Susan after the cockroach stops is -7.23 and is directed in the opposite direction of the initial lazy Susan angular speed

b)

The mechanical energy of the cockroach is not converted as it stops

To understand thermal linear expansion in solid materials. Most materials expand when their temperatures increase. Such thermal expansion, which is explained by the increase in the average distance between the constituent molecules, plays an important role in engineering. In fact, as the temperature increases or decreases, the changes in the dimensions of various parts of bridges, machines, etc., may be significant enough to cause trouble if not taken into account. That is why power lines are always sagging and parts of metal bridges fit loosely together, allowing for some movement. It turns out that for relatively small changes in temperature, the linear dimensions change in direct proportion to the temperature.
For instance, if a rod has length L0 at a certain temperature T0 and length L at a higher temperature T, then the change in length of the rod is proportional to the change in temperature and to the initial length of the rod: L - L0 = αL0(T - T0),
or
ΔL = αL0ΔT.
Here, α is a constant called the coefficient of linear expansion; its value depends on the material. A large value of α means that the material expands substantially as the temperature increases; smaller values of α indicate that the material tends to retain its dimensions. For instance, quartz does not expand much; aluminum expands a lot. The value of α for aluminum is about 60 times that of quartz!
Questions:
A) Compared to its length in the spring, by what amount ΔLwinter does the length of the bridge decrease during the Teharian winter when the temperature hovers around -150°C?
B) Compared to its length in the spring, by what amount ΔLsummer does the length of the bridge increase during the Teharian summer when the temperature hovers around 700°C?

Answers

Answer:

Check the explanation

Explanation:

Kindly check the attached image below to see the step by step explanation to the question above.

The greater the distance between two objects in space, the _______ their gravitational

Answers

Answer is Weaker. If it is talking about the objects' gravitational forces.

Which is a characteristic of diatoms?
A)whip-like tail
B)heterotrophic
C)multicellular
D)glass-ive cell wall

Answers

Answer:

b

Explanation:

Answer:

The correct answer is D, diatoms have glass-like cell walls.

If Jim could drive a Jetson's flying car at a constant speed of 440 km/hr across oceans and space, approximately how long (in millions of years, in 106 years) would he take to drive to a nearby star that is 12.0 light-years away? Use 9.461 × 1012 km/light-year and 8766 hours per year (365.25 days).

Answers

Answer:

t = 2.94 x 10⁶ years

Explanation:

The equation used in the case of constant speed is:

s = vt

t = s/v

where,

s = distance = 12 light years

s = (12 light years)(9.461 x 10¹² km/light year) =  113.532 x 10¹² km

v = speed = 440 km/hr

t = time passed = ?

Therefore,

t = (113.532 x 10¹² km)/(440 km/hr)

t = 2.58 x 10¹¹ hr

Now, converting it to years:

t = (2.58 x 10¹¹ hr)(1 year/8766 hr)

t = 2.94 x 10⁶ years

6. The two ends of an iron rod are maintained at different temperatures. The amount of heat thatflows through the rod by conduction during a given time interval does notdepend uponA) the length of the iron rod.B) the thermal conductivity of iron.C) the temperature difference between the ends of the rod.D) the mass of the iron rod.E) the duration of the time interval.Ans: DDifficulty: MediumSectionDef: Section 13-27. The ends of a cylindrical steel rod are maintained at two different temperatures. The rod conducts heat from one end to the other at a rate of 10 cal/s. At what rate would a steel rod twiceas long and twice the diameter conduct heat between the same two temperatures

Answers

Answer:

20cal/s

Explanation:

Question:

There are two questions. The first one has been answered:

From the formular, Power = Q/t = (kA∆T)/l

the amount heat depends on the duration of time interval, length of the iron rod, the thermal conductivity of iron and the temperature difference between the ends of the rod.

The amount of heat that flows through the rod by conduction during a given time interval does not depend upon the mass of the iron rod (D).

Second question:

The ends of a cylindrical steel rod are maintained at two different temperatures. The rod conducts heat from one end to the other at a rate of 10 cal/s. At what rate would a steel rod twice as long and twice the diameter conduct heat between the same two temperatures?

Solution:

Power = 10cal/s

Power = energy per unit time = Q/t

Where Q = energy

Power = (kA∆T)/l

k = thermal conductivity of iron

A = area

Area = πr^2

r = radius

Diameter = d = 2r

r = d/2

Area = (πd^2)/4

Length = l

∆T = change in temperature

10 = (kA∆T)/l

For a steel rod with length doubled and diameter doubled:

Let Length (L) = 2l

Diameter (D)= 2d

Area = π [(2d)^2]/4 = (π4d^2)/4

Area = 4(πd^2)/4

Using the formula Power = (kA∆T)/l, insert the new values for A and l

Power = [k × 4(πd^2)/4 × ∆T]/2l

Power = [4k((πd^2)/4) ∆T]/2l

Power = [(4/2)×k((πd^2)/4) ∆T]/l

Power = [2k(A) ×∆T]/l = 2(kA∆T)/l

Power of a steel that has its length doubled and diameter doubled = 2(kA∆T)/l

Recall initial Power = (kA∆T)/l = 10cal/s

And ∆T is the same

2[(kA∆T)/l] = 2 × 10

Power of a steel that has its length doubled and diameter doubled = 20cal/s

A turntable has a moment of inertia of 3.00 x 10-2 kgm2 and spins freely on a frictionless bearing at 25.0 rev/min. A 0.300 kg ball of putty is dropped vertically on the turntable and sticks at a point 0.10m from the center. The total moment of inertia of the system increases, and the turntable slows down. But by what factor does the angular momentum of the system change after the putty is dropped onto the turntable

Answers

Answer:

There will be no change in the angular momentum of the system.

Explanation:

Total angular momentum of the system  will remain unchanged . We can apply law of conservation of momentum because no external torque is acting on the system . There is increase in the momentum of inertia due to dropping of ball of putty . In order to conserve angular momentum , the system decreases its angular velocity . Hence the final angular momentum remains unchanged .  

PIUDICITIS CONSECulvely and Circle your aliswers. Lilyo
proper significant digits.
53. When you turn on your CD player, the turntable accelerates from zero to 41.8 rad/s in
3.0 s. What is the angular acceleration?
or​

Answers

Answer:

The angular acceleration of CD player is [tex]13.93\ rad/s^2[/tex].

Explanation:

Initial angular speed of a CD player is 0 and final angular speed is 41.8 rad/s. Time to change the angular speed is 3 s.

It is required to find the angular acceleration. The change in angular speed of the CD player divided by time taken is called its angular acceleration. It can be given by :

[tex]a=\dfrac{\omega_f-\omega_i}{t}\\\\a=\dfrac{41.8-0}{3}\\\\a=13.94\ rad/s^2[/tex]

So, the angular acceleration of CD player is [tex]13.93\ rad/s^2[/tex].

A steam engine takes in superheated steam at 270 °C and discharges condensed steam from its cylinder at 50 °C. The engine has an efficiency of 30%, and taken in 50 kJ from the hot steam per cycle. If a Carnot engine takes in the same amount of heat per cycle and operates at these temperatures, the work it can turn into is most likely to be:a) 15 kJ. b) 20 kJ. c) 10 kJ. d) 50 kJ.

Answers

Answer:

b) 20 kJ

Explanation:

Efficiency of carnot engine = (T₁ - T₂ ) / T₁  Where T₁ is temperature of hot source  and T₂ is temperature of sink .

T₁ = 270 + 273 = 543K

T₂ = 50 + 273 = 323 K

Putting the given values of temperatures

efficiency = (543 - 323) / 543

= .405

heat input = 50 KJ

efficiency = output work / input heat energy

.405 = output work / 50

output work = 20.25 KJ.

= 20 KJ .

Newton's law of cooling states that the temperature of an object changes at a rate proportional to the difference between its temperature and that of its surroundings. Suppose that the temperature of a cup of coffee obeys Newton's law of cooling. If the coffee has a temperature of 210 degrees Fahrenheit when freshly poured, and 2.5 minutes later has cooled to 191 degrees in a room at 64 degrees, determine when the coffee reaches a temperature of 156 degrees.

Answers

Answer:

Explanation:

The problem is based on Newton's law of cooling .

According to Newton's law

dQ / dt = k ( T - T₀ ) ,

dT / dt = k' ( T - T₀ )          ; dT / dt is rate of fall of temperature.

T is average  temperature of hot body , T₀ is temperature of surrounding .

In the first case rate of fall of temperature = (210 - 191) / 2.5

= 7.6 degree / s

average temperature T = (210 + 191) /2

= 200.5  

Putting in the equation

7.6 = k' ( 200.5  - 64 )

k' = 7.6 / 136.5

= .055677

In the second case :---

In the second case, rate of fall of temperature = (191 - 156) / t  

= 35 / t   , t is time required.

average temperature T = (156 + 191) /2

= 173.5  

Putting in the equation

35 / t = .05567 ( 173.5 - 64 )

t = 5.74 minute .

A 0.009 kg bullet fired through a door enters at 803 m/s and leaves at 617 m/s. If the door material is known to exert an average resistive force of 5620 N on bullets of this type at usual speeds, find the thickness of the door.

Answers

Answer:

The thickness of the door is 0.4230 m

Explanation:

Given;

mass of bullet, m = 0.009 kg

initial velocity of the bullet, u = 803 m/s

final velocity of the bullet, v = 617 m/s

average resistive force of the door on the bullet, F = 5620 N

Apply Newton's second law of motion;

Force exerted by the door on the bullet = Force of the moving bullet

F = ma

where;

F is applied force

m is mass

a is acceleration

Also, Force exerted by the door on the bullet = Force of the moving bullet

[tex]F =ma, \ But \ a =\frac{dv}{dt} = \frac{u-v}{t} \\\\F = \frac{m(u-v)}{t}[/tex]

where;

v is the final velocity of the bullet

u is initial velocity of the bullet

t is time

We need to calculate the time spent by the bullet before it passes through the door.

[tex]t = \frac{m(u-v)}{F} \\\\t = \frac{0.009(803-617)}{5620} = 0.0002979 \ s[/tex]

Distance traveled by the bullet within this time period = thickness of the door

This distance is equivalent to the product of average velocity and time

[tex]S = (\frac{u+v}{2}) t[/tex]

where;

s is the distance traveled

[tex]S = (\frac{u+v}{2}) t\\\\S = (\frac{803+617}{2}) 0.0002979\\\\S = 0.4230 \ m[/tex]

Therefore, the thickness of the door is 0.4230 m

A cylindrical specimen of some metal alloy having an elastic modulus of 108 GPa and an original cross-sectional diameter of 3.7 mm will experience only elastic deformation when a tensile load of 1890 N is applied. Calculate the maximum length of the specimen before deformation if the maximum allowable elongation is 0.45 mm.

Answers

Answer:

L= 276.4 mm

Explanation:

Given that

E= 180 GPa

d= 3.7 mm

F= 1890 N

ΔL= 0.45 mm

We know that ,elongation due to load F in a cylindrical bar is given as follows

[tex]\Delta L =\dfrac{FL}{AE}[/tex]

[tex]L=\dfrac{\Delta L\times AE}{F}[/tex]

Now by putting the values in the above equation we get

[tex]L=\dfrac{0.45\times 10^{-3}\times \dfrac{\pi}{4}\times (3.7\times 10^{-3})^2\times 108\times 10^9}{1890}\ m[/tex]

L=0.2764 m

L= 276.4 mm

Therefore the length of the specimen will be 276.4 mm

Electric fields are MOST associated with ________.

Answers

With each point in space
Other Questions
Can someone write me an 8 line poem using multiple voices and refrain? Which statement about the parabola is not true?A. The focus lies on the axis of symmetry.B.The directrix of the parabola is parallel to the axis of symmetry.C. Each point on the parabola is equidistant from the directrix and the focus Q9. A cylindrical specimen of a metal alloy 54.8 mm long and 10.8 mm in diameter is stressed in tension. A true stress of 365 MPa causes the specimen to plastically elongate to a length of 61.8 mm. If it is known that the strain-hardening exponent for this alloy is 0.2, calculate the true stress (in MPa) necessary to plastically elongate a specimen of this same material from a length of 54.8 mm to a length of 64.7 mm. (10 points) can anyone please help me What is 19 percent of 50 Find the volume of the cone khan academy How long will it take for 64 g of a radioactive material to be reduced to 2.0 g if the half-life is 0.5 hours? pls pls pls pls pls pls pls pls pls pls helpan airplane takes off from an airport at 11 am. fifteen minutes later, its shadow is 360000 feet away from the take off point and its altitude is 24000 ft. what is the exact distance the plane traveled in 15 minutes Please answer this question x^2 = 11x Which of these locations is most likely to experience moderate climate throughout the year? Trigonometry!! Please Help picture attached What is the slope of the line through (-2,-6)(2,6)left parenthesis, minus, 2, comma, minus, 6, right parenthesis and (2,2)(2,2)left parenthesis, 2, comma, 2, right parenthesis? Which of the following led to dust storms during the 1930s?the practice of crop rotationranching and heavy rainsfarmers' financial problemsboth farming and drought A waitress serves $950. Worth of dinners and recieves &95.00 in tips how much less in tips did she receive if she had gotten her 15% of the cost of meals Select the equivalent expression.(2^-4 x z^-3)^5 =Choose 1 answer: Complete the point slope equation of the line through (1,3) and (5,1) THIS IS NOT A QUESTION! This is a list of Area and Perimeter on the coordinate plane answers from Khan Academy. approximate perimeter of STRIPE is 36.01area of rectangle TOUR is 80perimeter of of polygon CHOMP is 32.52area of parallelogram YORK is 122the area of trapezoid MASK is 34 The approximate perimeter of polygon CODIFY is 51.53 The area of triangle SOL is 52The approximate perimeter of polygon DINGO is 34.44the approximate perimeter of the isosceles triangle PAZ is 20.03the area of triangle CAW is 10The approximate perimeter of rectangle PEAR is 34.99The area of trapezoid COWL is 45The area of triangle TOP is 87/2 unitsThe approximate perimeter of triangle VEN is 29.80The area of parallelogram TOWN is 40 the approximate perimeter of quadrilateral BOAT is 30.34 1. Write a pair of classes, Square1 and Rectangle1. Define Square1 as a subclass of Rectangle1. In addition to setters and getters, provide such methods as computeArea and computePerimeter. Specify the preconditions, postconditions and class invariants, if any, as comments ( Which of the following shows the correct simplification assuming the denominator is not equal to zero? how did Jesus reinforce traditional Jewish teaching