1. Convert a distance of 54 feet into yards

Answers

Answer 1

Answer:

18 yards

Step-by-step explanation:

54/3 = 18

3 feet = 1 yard


Related Questions

What is the common difference between successive terms in the sequence?

0.36, 0.26, 0.16, 0.06, –0.04, –0.14,

Answers

The correct answer is: -0.10. Explanation: The common difference between successive terms in a sequence is the number you add to each term to find the next one.

Which of the following is equivalent to a real number?
A. (-46)^1/2
B. (-10596)^1/8
C. (-4099)^1/5
D. (-5403)^1/6​

Answers

Answer:

C. (-4099)^1/5

Step-by-step explanation:

[tex]x^{\frac{1}{2} } = \sqrt{x}[/tex]

you can not take roots (real roots) of a negative number if the exponent is

even ... A,B,D have even exponents (in the denominator of the exponent.. in other words the index of the radical is even)...

the only odd index is in "B" (the 5 in the 1/5)

Seventeen individuals are scheduled to take a driving test at a particular DMV office on a certain day, nine of whom will be taking the test for the first time. Suppose that six of these individuals are randomly assigned to a particular examiner, and let X be the number among the six who are taking the test for the first time. (a) What kind of a distribution does X have (name and values of al parameters)? 17 hx;6, 9, 17) O h(x; 6,? 17 bx; 6, 9,17) (x; 6, 9, 17) 17 (b) Compute P(X = 4), P(X S 4), and P(X PLX = 4) 0.2851 PX S 4)-13946X RX24) -0.1096 X 4). (Round your answers to four decimal places.) (c) Calculaethe mean value and standard deviation of X. (Round your answers to three decimal places.)

Answers

Answer:  

a) h(x; 6, 9, 17).

b) P[X=2] = 0.2036

P[X ≤ 2] = 0.2466

P[X ≥ 2] = 0.9570.

c) Mean  = 3.176.

Variance = 1.028.

Standard deviation = 1.014.

Step-by-step explanation:

From the given details K=6, n=9, N=-17.

We conclude that it is the hypergeometric distribution:  

a) h(x; 6, 9, 17).

b)

[tex]P[X=2]=\frac{(^{g}C_{2})^{17-9}C_{6-2}}{^{17}C_{6}\textrm{}}[/tex]

P[X=2] = 0.2036

P[X ≤ 2] = P(x=0)+ P(x=1) + P(x=2)

P[X ≤ 2] = 0.2466

P[X ≥ 2] = 1-[P(x=0)+P(x=1)]

P[X ≥ 2] = 0.9570.

c)

Mean= [tex]n\frac{K}{N}[/tex]

            = 3.176.

Variance = [tex]n\frac{K}{N}( \frac{N-K}{N})(\frac{N-n}{n-1} )[/tex]

               = 2.824 x 0.6471 x 0.5625

               = 1.028.

Standard deviation = [tex]\sqrt{1.028}[/tex] = 1.014.

(3) If a tire rotates at 400 revolutions per minute when the car is traveling 72km/h, what is the circumference of the tire?

Show all your steps.

Answers

Answer:

3 meters.

Step-by-step explanation:

400 rev / minute = 400 × 60 rev / 60 minutes

= 24,000 rev / hour

24,000 × C = 72,000 m : C is the circumference

C = 3 meters

Answer:

3 meters

Step-by-step explanation:

72 km / hour * 1 hour/ 60 min  * 1000m/ 1 km

72000 meters /60 minute

1200 meters / minute

velocity = radius * w

Where w is 2*pi * the revolutions per minute

1200 = r * 2 * pi *400

1200 / 800 pi = r

1.5 /pi = r meters

We want to find the circumference

C = 2 * pi *r

C = 2* pi ( 1.5 / pi)

C = 3 meters

3.52 A coin is tossed twice. Let Z denote the number of heads on the first toss and W the total number of heads on the 2 tosses. If the coin is unbalanced and a head has a 40% chance of occurring, find (a) the joint probability distribution of W and Z; (b) the marginal distribution of W; (c) the marginal distribution of Z

Answers

Answer:

a)  The joint probability distribution

P(0,0) = 0.36, P(1,0) = 0.24,   P(2,0) = 0,   P(0,1) = 0,  P(1,1) = 0.24,  P(2,1)= 0.16

b)  P( W = 0 ) = 0.36,    P(W = 1 ) = 0.48,  P(W = 2 ) = 0.16

c) P ( z = 0 ) = 0.6

  P ( z = 1 ) = 0.4

Step-by-step explanation:

Number of head on first toss = Z

Total Number of heads on 2 tosses = W

% of head occurring = 40%

% of tail occurring = 60%

P ( head ) = 2/5 ,    P( tail ) = 3/5

a) Determine the joint probability distribution of W and Z

P( W =0 |Z = 0 ) = 0.6         P( W = 0 | Z = 1 ) = 0

P( W = 1 | Z = 0 ) = 0.4        P( W = 1 | Z = 1 ) = 0.6

P( W = 1 | Z = 0 ) = 0           P( W = 2 | Z = 1 ) = 0.4

The joint probability distribution

P(0,0) = 0.36, P(1,0) = 0.24,   P(2,0) = 0,   P(0,1) = 0,  P(1,1) = 0.24,  P(2,1)= 0.16

B) Marginal distribution of W

P( W = 0 ) = 0.36,    P(W = 1 ) = 0.48,  P(W = 2 ) = 0.16

C) Marginal distribution of Z ( pmf of Z )

P ( z = 0 ) = 0.6

P ( z = 1 ) = 0.4

Part(a): The required joint probability of W and Z is ,

[tex]P(0,0)=0.36,P(1,0)=0.24,P(2,0)=0,P(0,1)=0,P(1,1)=0.24,\\\\P(2,1)=0.16[/tex]

Part(b): The pmf (marginal distribution) of W is,

[tex]P(w=0)=0.36,P(w=1)=0.48,P(w=2)=0.16[/tex]

Part(c): The pmf (marginal distribution) of Z is,

[tex]P(z=0)=0.6,P(z=1)=0.4[/tex]

Part(a):

The joint distribution is,

[tex]P(w=0\z=0)=0.6,P(w=1|z=0)=0.4,P(w=2|z=0)=0[/tex]

Also,

[tex]P(w=0\z=1)=0,P(w=1|z=1)=0.6,P(w=2|z=1)=0.4[/tex]

Therefore,

[tex]P(0,0)=0.36,P(1,0)=0.24,P(2,0)=0,P(0,1)=0,P(1,1)=0.24,\\\\P(2,1)=0.16[/tex]

Learn More: https://brainly.com/question/13127182

Two angles of a triangle have the same measure and the third one is 36 degrees greater than the measure of each of the other two. Find the measure of the LARGEST angle in the triangle.

Answers

Answer:

Largest angle is 84

Step-by-step explanation:

Let the smallest angle be x, ATQ, x+x+x+36=180, 3x+36=180, x=48

-28=7(x-7) what does x equal

Answers

Answer:

x=3

Step-by-step explanation:

7(x - 7) = -28

x - 7 = -4

x = 3

Answer:

x = 3

Step-by-step explanation:

Your goal is to isolate the x from the other numbers.

-28 = 7(x - 7)

Distribute the 7 to the (x - 7)

You will end up with:

-28 = 7x - 49

Add 49 to both sides of the equation to further isolate the x

21 = 7x

Finally, divide both sides by 7 so x is by itself

x = 3

URGENT HELP!!!!
Picture included

Answers

Answer:

Length (L) = 72 feet

Step-by-step explanation:

From the question given above, the following data were obtained:

Period (T) = 9.42 s

Pi (π) = 3.14

Length (L) =?

The length of the pendulum can be obtained as follow:

T = 2π √(L/32)

9.42 = (2 × 3.14) √(L/32)

9.42 = 6.28 √(L/32)

Divide both side by 6.28

√(L/32) = 9.42 / 6.28

Take the square of both side

L/32 = (9.42 / 6.28)²

Cross multiply

L = 32 × (9.42 / 6.28)²

L = 72 feet

Thus, the Lenght is 72 feet

plzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz help i will give
brainliest

Answers

Answer:

55

Step-by-step explanation:

55 appears 3 times, which is the most repetition in the data set

Answer:

55

Step-by-step explanation:

Mode = number that appears most often

The number 55 appears 3 times which is the most out of the other numbers

Hence mode = 55

At the Fidelity Credit Union, a mean of 3.5 customers arrive hourly at the drive-through window. What is the probability that, in any hour, more than 5 customers will arrive? Round your answer to four decimal places.

Answers

Answer:

0.1423 = 14.23% probability that, in any hour, more than 5 customers will arrive.

Step-by-step explanation:

We have the mean, which means that the Poisson distribution is used to solve this question.

In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:

[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]

In which

x is the number of sucesses

e = 2.71828 is the Euler number

[tex]\mu[/tex] is the mean in the given interval.

A mean of 3.5 customers arrive hourly at the drive-through window.

This means that [tex]\mu = 3.5[/tex]

What is the probability that, in any hour, more than 5 customers will arrive?

This is:

[tex]P(X > 5) = 1 - P(X \leq 5)[/tex]

In which

[tex]P(X \leq 5) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5)[/tex]

Then

[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]

[tex]P(X = 0) = \frac{e^{-3.5}*3.5^{0}}{(0)!} = 0.0302[/tex]

[tex]P(X = 1) = \frac{e^{-3.5}*3.5^{1}}{(1)!} = 0.1057[/tex]

[tex]P(X = 2) = \frac{e^{-3.5}*3.5^{2}}{(2)!} = 0.1850[/tex]

[tex]P(X = 3) = \frac{e^{-3.5}*3.5^{3}}{(3)!} = 0.2158[/tex]

[tex]P(X = 4) = \frac{e^{-3.5}*3.5^{4}}{(4)!} = 0.1888[/tex]

[tex]P(X = 5) = \frac{e^{-3.5}*3.5^{5}}{(5)!} = 0.1322[/tex]

Finally

[tex]P(X \leq 5) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) = 0.0302 + 0.1057 + 0.1850 + 0.2158 + 0.1888 + 0.1322 = 0.8577[/tex]

[tex]P(X > 5) = 1 - P(X \leq 5) = 1 - 0.8577 = 0.1423[/tex]

0.1423 = 14.23% probability that, in any hour, more than 5 customers will arrive.

How many subsets of at least one element does a set of seven elements have?

Answers

[tex]\boxed{\large{\bold{\blue{ANSWER~:) }}}}[/tex]

For each subset it can either contain or not contain an element. For each element, there are 2 possibilities. Multiplying these together we get 27 or 128 subsets. For generalisation the total number of subsets of a set containing n elements is 2 to the power n.

n=7 elemens

total subsets

2^n2⁷128

A bus driver makes roughly $3280 every month. How much does he make in one week at this rate.

Answers

Answer:

I think around $36

Hope it helps!

Answer:

It depends...

Step-by-step explanation:

It depends how much weeks are in the month if there are three weeks and no extra days then you would have an answer of about 1093 (exact: 1093.33333333). just divide the number of weeks by the number of money.

Which property was used to simplify the expression 4(b+2)=4b+8

Answers

Answer: distributive property

Step-by-step explanation: the 4 is multiplied by everting in the parenthesis

There were 2,300 applicants for enrollment to the freshman class at a small college in the year 2010. The number of applicants has risen linearly by roughly 170 per year. The number of applications f(x) is given by f(x) = 2,300 + 170x, where x is the number of years since 2010. a. Determine if the function g(x) = * = 2,300 is the inverse of f. 170 b. Interpret the meaning of function g in the context of the problem.
a. No
b. The value g(x) represents the number of years since the year 2010 based on the number of applicants to the freshman class, x.
a. Yes
b. The value 8(x) represents the number of applicants to the freshman class based on the number of years since 2010,
a. No
b. The value slx) represents the number of applicants to the freshman class based on the number of years since 2010,
a. Yes
b. The value six) represents the number of years since the year 2010 based on the number of applicants to the freshman class x

Answers

Answer:

The inverse function is [tex]g(x) = \frac{x - 2300}{170}[/tex]

The value of g(x) represents the number of applicants to the freshman class based on the number of years since 2010.

Step-by-step explanation:

Number of applicants in x years after 2010:

Is given by the following function:

[tex]f(x) = 2300 + 170x[/tex]

Inverse function:

We exchange the values of y = f(x) and x in the original function, and then find y. So

[tex]x = 2300 + 170y[/tex]

[tex]170y = x - 2300[/tex]

[tex]y = \frac{x - 2300}{170}[/tex]

[tex]g(x) = \frac{x - 2300}{170}[/tex]

The inverse function is [tex]g(x) = \frac{x - 2300}{170}[/tex]

Meaning of g:

f(x): Number of students in x years:

g(x): Inverse of f(x), is the number of years it takes for there to be x applicants, so the answer is:

The value of g(x) represents the number of applicants to the freshman class based on the number of years since 2010.

A chemist has three different acid solutions.

The first solution contains 25% acid, the second contains 35%acid, and the third contains 55% acid.
She created 120 liters of a 40% acid mixture, using all three solutions. The number of liters of 55% solution used is 3 times the number of liters of 35% solution used.

How many liters of each solution was used?

Answers

Let x, y, and z be the amounts (in liters, L) of the 25%, 35%, and 55% solutions that the chemist used.

She ended up with 120 L of solution, so

x + y + z = 120 … … … [1]

x L of 25% acid solution contains 0.25x L of acid. Similarly, y L of 35% solution contains 0.35y L of acid, and z L of 55% solution contains 0.55z L of acid. The concentration of the new solution is 40%, so that it contains 0.40 (120 L) = 48 L of acid, which means

0.25x + 0.35y + 0.55z = 48 … … … [2]

Lastly,

z = 3y … … … [3]

since the chemist used 3 times as much of the 55% solution as she did the 35% solution.

Substitute equation [3] into equations [1] and [2] to eliminate z :

x + y + 3y = 120

x + 4y = 120 … … … [4]

0.25x + 0.35y + 0.55 (3y) = 48

0.25x + 2y = 48 … … … [5]

Multiply through equation [5] by -2 and add that to [4] to eliminate y and solve for x :

(x + 4y) - 2 (0.25x + 2y) = 120 - 2 (48)

0.5x = 24

x = 48

Solve for y :

x + 4y = 120

4y = 72

y = 18

Solve for z :

z = 3y

z = 54

What is the area of the circle in terms of [tex]\pi[/tex]?

a. 3.4225[tex]\pi[/tex] m²
b. 6.845[tex]\pi[/tex] m²
c. 7.4[tex]\pi[/tex] m²
d. 13.69[tex]\pi[/tex] m²

Answers

[tex] \sf \: d \: = 3.7m \\ \sf \: r \: = \frac{3.7}{2} = 1.85 \: m\\ \\ \sf \: c \: = \pi {r}^{2} \\ \\ \sf \: c \: = \pi ({1.85})^{2} \\ \sf c = 1.85 \times 1.85 \times \pi \\ \sf \: c = \boxed {\underline{ \bf a. \: 3.4225\pi \: m ^{2} }}[/tex]

HELP ASAP PLEASE! I tried inputting the numbers into the standard deviation equation but I did not get the right answer to find z. Can someone please help me? Thank you for your time!

Answers

Answer:

Z =  -1.60

it is low ... it appears that for this problem 2 standard deviations below must be reached to be considered "unusual"

Step-by-step explanation:

Simplify this expression 3^-3
ASAPPPP PLSSSS

Answers

Step-by-step explanation:

-27 okay 3^-3 its same as 3^3

Answer: A)

[tex]3^{-3}[/tex]

[tex]3^{-3}=\frac{1}{3^3}[/tex]

[tex]=\frac{1}{3^3}[/tex]

[tex]3^3=27[/tex]

[tex]=\frac{1}{27}[/tex]

OAmalOHopeO


If the cost of a 2.5 meter cloth is $30.5. What will be the cost of 22 meters ?

Answers

Answer:

268.40

Step-by-step explanation:

We can write a ratio to solve

2.5 meters        22 meters

-----------------  = --------------

30.5 dollars       x dollars

Using cross products

2.5 * x = 30.5 * 22

2.5x =671

Divide each side by 2.5

2.5x / 2.5 = 671/2.5

x =268.4

The cost of producing a custom-made clock includes an initial set-up fee of $1,200 plus an additional $20 per unit made. Each clock sells for $60. Find the number of clocks that must be produced and sold for the costs to equal the revenue generated. (Enter a numerical value.)

Answers

Answer:

30 clocks

Step-by-step explanation:

Set up an equation:

Variable x = number of clocks

1200 + 20x = 60x

Isolate variable x:

1200 = 60x - 20x

1200 = 40x

Divide both sides by 40:

30 = x

Check your work:

1200 + 20(30) = 60(30)

1200 + 600 = 1800

1800 = 1800

Correct!

[(2021-Y)-5]*X-X=XX cho biết X,Y,XX là gì?

Answers

nfbdjanckwochgducbenxikwks

Please help with this question

Answers

Answer:

im not too sure but try using a cartesuan plane and measure it precisely using a protractor then key in the measurements. Im not entirely sure its the correct method tho

Anthony read 46 pages of a book in 23 minutes.

To find the unit rate, use
.
Anthony read
pages per minute.

Answers

Answer:

2 pages per minute

Step-by-step explanation:

Take the number of pages and divide by the number of minutes

46 pages / 23 minutes

2 pages per minute

Answer:

2 Pages per Minute

Solutions:

46 ÷ 23 = 2

Final Answer:

Anthony can read 2 pages per minute.

Suppose a rumor is going around a group of 191 people. Initially, only 38 members of the group have heard the rumor, but 3 days later 68 people have heard it. Using a logistic growth model, how many people are expected to have heard the rumor after 6 days total have passed since it was initially spread? (Round your answer to the nearest whole person.)

Answers

Answer:

106 people.

Step-by-step explanation:

Logistic equation:

The logistic equation is given by:

[tex]P(t) = \frac{K}{1+Ae^{-kt}}[/tex]

In which

[tex]A = \frac{K - P_0}{P_0}[/tex]

K is the carrying capacity, k is the growth/decay rate, t is the time and P_0 is the initial value.

Suppose a rumor is going around a group of 191 people. Initially, only 38 members of the group have heard the rumor.

This means that [tex]K = 191, P_0 = 38[/tex], so:

[tex]A = \frac{191 - 38}{38} = 4.03[/tex]

Then

[tex]P(t) = \frac{191}{1+4.03e^{-kt}}[/tex]

3 days later 68 people have heard it.

This means that [tex]P(3) = 68[/tex]. We use this to find k.

[tex]P(t) = \frac{191}{1+4.03e^{-kt}}[/tex]

[tex]68 = \frac{191}{1+4.03e^{-3k}}[/tex]

[tex]68 + 274.04e^{-3k} = 191[/tex]

[tex]e^{-3k} = \frac{191-68}{274.04}[/tex]

[tex]e^{-3k} = 0.4484[/tex]

[tex]\ln{e^{-3k}} = \ln{0.4484}[/tex]

[tex]-3k = \ln{0.4484}[/tex]

[tex]k = -\frac{\ln{0.4484}}{3}[/tex]

[tex]k = 0.2674[/tex]

Then

[tex]P(t) = \frac{191}{1+4.03e^{-0.2674t}}[/tex]

How many people are expected to have heard the rumor after 6 days total have passed since it was initially spread?

This is P(6). So

[tex]P(6) = \frac{191}{1+4.03e^{-0.2674*6}} = 105.52[/tex]

Rounding to the nearest whole number, 106 people.

(3.5 x 10 ^ -4) ÷ (5 x 10 ^ 5) in standard form PLZZ ANSWER QUICK

Answers

Answer:

7x10 ^-10

Step-by-step explanation:

A trade magazine routinely checks the​ drive-through service times of​ fast-food restaurants. 95​% confidence interval that results from examining 609 customers in one​ fast-food chain's​ drive-through has a lower bound of 160.8 seconds and an upper bound of 160.8 seconds. What does this​ mean?

Answers

Answer:

z= 1.70 Since the test statistic is less than the critical​ value, we can conclude that the average length of an online video is not more than 8 minutes

Can someone please help me thank you !!!!!

Answers

im pretty sure it is A?

Please help with this question

Answers

9514 1404 393

Answer:

  (d)  -1/32

Step-by-step explanation:

It may be easier to rearrange the expression so it has positive exponents.

  [tex]\dfrac{1}{2^{-2}x^{-3}y^5}=\dfrac{2^2x^3}{y^5}=\dfrac{4(2)^3}{(-4)^5}=-\dfrac{4\cdot8}{1024}=\boxed{-\dfrac{1}{32}}[/tex]

A wire 9 meters long is cut into two pieces. One piece is bent into a equilateral triangle for a frame for a stained glass ornament, while the other piece is bent into a circle for a TV antenna. To reduce storage space, where should the wire be cut to minimize the total area of both figures? Give the length of wire used for each: For the equilateral triangle:

Answers

The length of wire used for the equilateral triangle is approximately 5.61 meters.

The remaining length of wire used for the circle will be 9 - 5.61 ≈ 3.39 meters.

Here,

To minimize the total area of both figures, we need to find the optimal cut point for the wire.

Let's assume the length of the wire used for the equilateral triangle is x meters, and the remaining length of the wire used for the circle is (9 - x) meters.

For the equilateral triangle:

An equilateral triangle has all three sides equal in length.

Let's call each side of the triangle s meters. Since the total length of the wire is x meters, each side will be x/3 meters.

The formula to find the area of an equilateral triangle with side length s is:

Area = (√(3)/4) * s²

Substitute s = x/3 into the area formula:

Area = (√(3)/4) * (x/3)²

Area = (√(3)/4) * (x²/9)

Now, for the circle:

The circumference (perimeter) of a circle is given by the formula:

Circumference = 2 * π * r

Since the remaining length of wire is (9 - x) meters, the circumference of the circle will be 2π(9 - x) meters.

The formula to find the area of a circle with radius r is:

Area = π * r²

To find the area of the circle, we need to find the radius.

Since the circumference is equal to 2πr, we can set up the equation:

2πr = 2π(9 - x)

Now, solve for r:

r = (9 - x)

Now, substitute r = (9 - x) into the area formula for the circle:

Area = π * (9 - x)²

Now, we want to minimize the total area, which is the sum of the areas of the triangle and the circle:

Total Area = (√(3)/4) * (x²/9) + π * (9 - x)²

To find the optimal value of x that minimizes the total area, we can take the derivative of the total area with respect to x, set it to zero, and solve for x.

d(Total Area)/dx = 0

Now, find the critical points and determine which one yields the minimum area.

Taking the derivative and setting it to zero:

d(Total Area)/dx = (√(3)/4) * (2x/9) - 2π * (9 - x)

Setting it to zero:

(√(3)/4) * (2x/9) - 2π * (9 - x) = 0

Now, solve for x:

(√(3)/4) * (2x/9) = 2π * (9 - x)

x/9 = (8π - 2πx) / (√(3))

Now, isolate x:

x = 9 * (8π - 2πx) / (√(3))

x(√(3)) = 9 * (8π - 2πx)

x(√(3) + 2π) = 9 * 8π

x = (9 * 8π) / (√(3) + 2π)

Now, we can calculate the value of x:

x ≈ 5.61 meters

So, the length of wire used for the equilateral triangle is approximately 5.61 meters.

The remaining length of wire used for the circle will be 9 - 5.61 ≈ 3.39 meters.

To learn more on derivative click:

brainly.com/question/12445967

#SPJ4

A medicine bottle contains 8 grams of medicine. One dose is 400 milligrams. How many milligrams does the bottle contain?

Answers

Answer:

8×1000 milligrams

8000 milligrams

Other Questions
Fender Manufacturing Company needs to know its anticipated cash inflows for the next quarter by month. Cash sales are 10% of total sales each month. Historically, sales on account have been collected as follows: 50% in the month of the sale, 35% in the month after the sale, and the remaining 15% two months after the sale. Sales for the quarter are projected as follows: January: $60,000February: $30,000: March: $90,000. Accounts receivable on December 31 were $45,000. The expected cash collections of Fender Manufacturing Company for March are:_________ f(x)=1/3x+7 find inverse Which sentence describes existing cells?All cells, once formed, continue to live forever.All cells come from previously existing cells.All the cells that are on Earth have always been here.All cells develop from the remains of other cells. 9. What does Shelley mean by "discovering" and "communicating the "principle of life"? Given that x : 3 : 9/2 = 15/4 : 4 1/2 : y, find the value of x and y. Find the error in the student's work. Which of the following steps is where the first error occurred?f(x) = -3x^2 - 2xStep 1: f(-2) = -3(2)^2 - 2(-2)Step 2: f(-2) = -3(4) + 4Step 3: f(-2) = -12 + 4Step 4: f(-2) = -8Step 3 should be 12 + 4.Step 2 should be -3(-4).O Step 1 should have a -2 substituted for both values. ASAP A group of specialized cells working together to perform a function is a(n) ____________.A. TissueB. CellC. OrganD. Organ system Pls help me decideDo we need to study math or data entry for an animation career (10th grade) What determines which price the company should choose for its running shoes? Need help please and check your answer A right pyramid with a square base hasvolume of 252 cubic centimeters. Thelength of one of the sides of its base is 6centimeters. Rounded to the nearestcentimeter, what is the vertical height ofthe pyramid? What is the Answer to: 120 Times 2/3 How do both presidents use a similar approach in their arguments?Both convey a tone of disgust regarding present challenges and past mistakes.Both rely on exaggerated adjectives to stir up emotions.Both use repetition to underscore important points.Both cater to a select audience of highly educated, powerful citizens. Helpp me plzzz im being timed Help!!! Make brainliest Where was the Statue of Liberty originally constructed? How many solutions exist for the given equation?121 x+ 1 =3(4x+1)-2zeroonetwoinfinitely many Which function describes this graph **************************************************************** vHelena has five different flowers. She plans to give one flower to each of her five teachers in any order. She gives the first flower to one of her teachers in the morning.In how many different ways can she give the four remaining flowers to the rest of the teachers in the afternoon?1 combination4 combinations21 combinations24 combinations