Computing on demand, on the cloud, and in real time IT Enviroment is most impacted by Are is known as gird computing.
What is Data Analysis?
Data analysis is the methodical application of logical and/or statistical approaches to describe and demonstrate, summarise and assess, and assess data.
Concept:
Step 1: A network of connected computers that act as a single supercomputer to complete complex tasks like modelling or data analysis is known as gird computing.
Step 2 : On-demand computing is a delivery method in which users are provided with computing resources as needed.
Step 3 : Real-time computing refers to a computer system that responds to an event by completing a task in a predetermined amount of time. a system for air traffic management as an example.
Grid computing, on-demand computing, and real-time computing
To learn more about Data Analysis visit:
brainly.com/question/11954701
#SPJ4
to specify that x1 must be at most 75% of the blend of x1 , x2 , and x3 , we must have a constraint of the form
The linear constraint form of the variables is X1 =< 0.75(X1 + X2 + X3)
The term linear refers the algebraic equation of the form y=mx+b. involving only a constant and a first-order (linear) term, where m is the slope and b is the y-intercept.
Here we have given that x1 must be at most 75% of the blend of x1 , x2 , and x3 ,
Abd here we must have to find the linear constraint of the form of the variables.
While we looking into the given question we have identified the three are three variables are given they are x1, x2 and x3.
And we have also given that x1 must be greater than 75% when we convert this into decimal then we get the value 0.75.
Here the term of blend refers the sum of the terms,
Then the linear constraint form of the variables is written as,
=> X1 =< 0.75 (X1 + X2 + X3)
To know more about Linear equation here.
https://brainly.com/question/11897796
#SPJ4
A man is in a boat 2 miles from the nearest point on the coast. He is to go to point Q, located 3 miles down the coast and 1 mile inland (see figure). He can row at a rate of 1 mile per hour and walk at 3 miles per hour. Toward what point on the coast should he row in order to reach point Q in the least time? (Round your answer to two decimal places.) 0.84 mile(s) down the coast
Least time required to reach the point Q as per the distance and the speed rate is equal to 2 hours.
As given in the question,
Nearest point on the coast is 2 miles far away
rate of the row = 1mile per hour
Walk at the rate of 3 miles per hour
Let 'x' hours be the least time to reach point Q.
Time = distance / speed
Time taken to reach the point Q = [√ 1 + ( 3 - x)² ]/ 3
Time taken to reach the coast = (√ 4 + x² ) / 1
Total time taken 't' = (√ 4 + x² ) / 1 + [√ 1 + ( 3 - x)² ]/ 3
To find least time dt/dx = 0
t = (√ 4 + x² ) / 1 + [√ 1 + ( 3 - x)² ]/ 3
⇒dt/dx = [ x / √ 4 + x² ] + ( 3 - x) / √( 10 -6x + x² )
⇒x / √ 4 + x² = ( x - 3) / √( 10 -6x + x² )
Squaring both the side we get,
x² / (4 + x²) = ( x - 3)² / ( 10 -6x + x² )
⇒3x² -24x +36 =0
⇒ x² -8x + 12 = 0
⇒ x = 2 or 6 hours
Therefore , the least time taken to reach the point Q is equal to 2 hours.
Learn more about least time here
brainly.com/question/17429465
#SPJ4
choose the answer that best describes the statement. probality can be used to determine the likelihood of specific .
The statements best describe probability as the relative likelihood that an event will occur. It is a number between 0 and 1 inclusive.
Probability
A mathematical tool used to examine unpredictability is probability. It discusses the likelihood that an event will occur. For instance, you might not get two heads and two tails if you flip a fair coin four times. But if you flip the same coin 4,000 times, you'll get results that are almost evenly split between heads and tails. The theoretically predicted chance of heads in any given toss is 12, or.5. There is a predictable pattern of results when there are numerous repetitions, even though the results of a few repetitions are unknown. One of the authors tossed a coin 2,000 times after reading about the English statistician Karl Pearson, who threw a coin 24,000 times and got 12,012 heads. The outcome was 996 heads. The expected chance of 5 is quite near to being reached by the fraction of 9962,000, which is equivalent to 498.
Learn more about the Event
https://brainly.com/question/25839839
#SPJ4
The retail cost of a computer is 37% more than its wholesale cost?which statement is true?1. THe retail cost of the computer is 132% more than the wholesale price.2. THe wholesale cost of the computer is 68% if the retail price.3. THe retail cost of the computer is 132% of the wholesale price.4. the retail cost of the computer is 37% of the wholesale price.
when retail cost of the computer is 37% of the wholesale price then Retail price is 1.37times wholesale price
Retailers who acquire products in bulk are subject to wholesale pricing.
Selling products at a greater price than what it costs to produce them allows businesses to turn a profit.
Retail pricing is what merchants decide to charge customers as their ultimate selling price.
Consumers are the primary focus of retail pricing.
According to the question,
The retail cost of a computer is 37% more than its wholesale cost
Let Retail cost be "x" and wholesale cost be "y"
So , x = y + 0.37y
=> x = 1.37y
Therefore , The retail price is 1.37times the wholesale price
To know more about Retail price here
https://brainly.com/question/12929999
#SPJ4
Find the vertex of the graph of f(x) = |0.25x − 0.75|. vertex ?
The vertex of the graph (3, 0)
What is Vertex of graph?
A vertex or node is the basic building block of a graph in discrete mathematics, and more precisely in graph theory. An undirected graph is made up of a set of vertices and a set of edges, whereas a directed graph is made up of a set of vertices and a set of arcs.
According to question
when f(x) = 0
that's the minimum point, the vertex, or the intersection of two lines, g(x) = 0.25x − 0.75 and h(x) = 0.75 - 0.25x
Therefore
find the intersection of Two line which are
⇒ y = x/4 - 3/4
⇒ 4y = x - 3 → First line
⇒ y = 3/4 - x/4
⇒ 4y = 3 - x → Second line
So x - 3 = 3 - x
2x = 6 ,
x = 3
And y = 0
hence the vertex of f(x) = (3, 0)
To learn more about Vertex , check out
https://brainly.com/question/29030495
#SPJ1
A researcher needs to assign 10 subjects, numbered 0 to
9, to one of two treatment groups: A and B. Use the table
of random digits, starting with the first row and first
column, to carry out the random assignment.
Table of Random Digits
1 07581 34728 65182 58648 53252 83952
2 23290 98227 30144 83191 12167 90414
3 79486 99776 71793 95330 58256 71156
4 46354 09077 98202 03946 07455 39303
5 00472 20787 54571 73719 04368 41032
Select the correct random assignment using the table.
A: 0, 7, 5, 8, 1
A: 0, 2, 4, 6, 8
B: 3, 4, 7, 2, 8
B: 1, 3, 5, 7, 9
B: 2, 9, 1, 7, 4
OA: 0, 3, 6, 5, 8
A: 0, 7, 5, 8, 1
B: 3, 4, 2, 6, 9
In response to the question, we may say that As a result, the right answer expression is OA: 0, 3, 6, 5, 8, corresponding to the participants assigned to therapy A.
what is expression ?An expression in mathematics is a collection of representations, numbers, and conglomerates that mimic a statistical correlation or regularity. A real number, a mutable, or a mix of the two can be used as an expression. Mathematical operators include addition, subtraction, fast spread, division, and exponentiation. Expressions are widely used in arithmetic, mathematics, and shape. They are employed in the depiction of mathematical formulas, the solving of equations, and the simplification of mathematical relationships.
To carry out the random assignment, we may utilise the following table of random digits:
Allocate the first ten topics to the table's rows, beginning with 0 and ending with 9.
Read the numerals from left to right, top to bottom, until 5 participants have been allocated to treatment A and 5 subjects have been assigned to treatment B.
We can get the following random assignment using this method:
A: 0, 3, 6, 5, 8 \sB: 1, 7, 4, 2, 9
As a result, the right answer is OA: 0, 3, 6, 5, 8, corresponding to the participants assigned to therapy A.
To know more about expression visit :-
https://brainly.com/question/14083225
#SPJ1
Answer:
A: 0, 7, 5, 8, 1 B: 3, 4, 2, 6, 9
Step-by-step explanation:
THE ANSWER IS D
Two different meal combinations at a chicken restaurant have the same number of total calories.
- The first meal has 8 chicken nuggets and a large order of fries.
- The second meal has 12 chicken nuggets and a small order of fries.
- The larger order of fries contains 288.5 calories.
- The small order of fries contains 193.5 calories.
Which equation and solution can be used to determine n, the number of calories in each chicken nugget?
A 12 n-288.5=8 n-193.5 ; n=24.1
B 8 n+193.5=12 n+288.5 ; n=23.75
C 193.5+12 n=288.5+8 n ; n=24.1
D 8 n+288.5=12 n+193.5 ; n=23.75
The equation which can be used to determine n, the number of calories in each chicken nugget would be 193.5+12 n=288.5+8n
And n = 24.1
Option (C) is correct.
What is a linear equation?
A linear equation is an equation that describes a straight line. Linear equations have the form y = mx + b, where x and y are variables and m and b are constants. The constant m is the slope of the line, and the constant b is the y-intercept, which is the point where the line crosses the y-axis.
To derive this equation, we can start with the fact that the two meals have the same number of total calories. This means that the number of calories in the first meal is equal to the number of calories in the second meal. We can represent this relationship with the equation:
8 nuggets * calories/nugget + 193.5 calories = 12 nuggets * calories/nugget + 288.5 calories
We can then rearrange the terms on the left and right sides of the equation to get the equation in the form given in option C:
193.5 + 12 n = 288.5 + 8 n
Finally, we can solve this equation for n by subtracting 8n from both sides and then dividing both sides by 4:
n = (193.5 - 288.5) / 4 = (-95) / 4 = -23.75
Therefore, the number of calories in each chicken nugget is 24.1 calories.
Hence, option (C) is correct.
To learn more about linear equations, visit:
https://brainly.com/question/14323743
#SPJ1
look at attached photo
The correct answer is A) y = 9000x + 65,000.
Find a linear equation that models the value of the house after x years?The correct answer is A) y = 9000x + 65,000.
This is an equation in slope-intercept form, where "y" is equal to the value of the house after x years, "9000x" is the slope (or rate of change) of the equation, and 65,000 is the y-intercept (or the initial value of the house). The equation can be derived from the given information.The initial value of the house is 65,000, so the y-intercept must be 65,000. To find the slope, we can use the formula "rise/run", or change in y/change in x.The house has increased in value by 54,000 ($119,000 - $65,000) over 6 years (change in x), so the slope must be 9000 (54,000/6).
The equation y = 9000x + 65,000
models the value of the house after x years, where y is the value of the house,
9000x is the slope of the equation,
and 65,000 is the y-intercept.
This equation can be used to calculate the value of the house after any given number of years.To learn more about linear equation in slope-intercept form refer to:
https://brainly.com/question/1884491
#SPJ1
Solve each equation. Round to the nearest ten-thousandth.
17(0.3x+5)
Answer:
first option
Step-by-step explanation:
using the property of logarithms
ln [tex]x^{n}[/tex] = nlnx ( ln is the natural logarithm )
given
[tex]17^{(0.3x+5)}[/tex] = 12
take the ln of both sides
ln [tex]17^{(0.3x+5)}[/tex] = ln 12 , then
(0.3x + 5) ln 17 = ln 12 ( divide both sides by ln 17 )
0.3x + 5 = [tex]\frac{ln12}{ln17}[/tex] ≈ 0.877063 ( subtract 5 from both sides )
0.3x ≈ - 4.12293 ( divide both sides by 0.3 )
x = [tex]\frac{-4.12293}{0.3}[/tex] ≈ - 13.7431 ( to the nearest ten thousandth )
whats the domain,range, and y-intercept and tell me if its exponential or linear.
k(x)=50(1.3)^x
0.3% is the percentage rate of increase in exponential function.
What exactly makes a function exponential?
A mathematical function using the following formula is an exponential function: f (x) = an x. where an is a constant known as the function's base and x is a variable.
The transcendental number e, or roughly 2.71828, is the most often encountered exponential-function base.
We have,
y = 50( 1.3)ˣ
The equation represents exponential growth because the growth factor is greater than 1.
The general form equation is
y(x)= a(1-r)^x such that r is the growth percent.
1 + r = 1.3
r = 0.3 ⇒ 0.3%
Learn more about exponential function
brainly.com/question/14355665
#SPJ1
3. What type of angle is angle A?
obtuse
acute
right
straight
The angle A is an obtuse angle of the regular polygon.
What is an angle?
An angle is a figure in Euclidean geometry made up of two rays that share a common terminal and are referred to as the angle's sides and vertices, respectively. Angles created by two rays are in the plane where the rays are located. The meeting of two planes also creates angles. We refer to these as dihedral angles.
The interior angle of a polygon is [(n-2)180°]/n.
Where n is the number of sides of the polygon.
The number of sides of the polygon is 8.
The measure of the interior of the polygon is [(8-2)180°]/8
= 135°
The obtuse angle is an angle that more than 90°.
Therefore angle is an obtuse angle.
To learn more about interior angle, click on below link:
https://brainly.com/question/10566696
#SPJ1
The linear regression equation for the data set is...
Answer: C
Step-by-step explanation: Because
A line is graphed on the coordinate grid to the right.
Which equation describes the line?
A.y=x/2+1/3
B.y = x/3+1/2
C.y=x/2+15 1/2
D.y=x/3+15 1/2
The equation of the line would be y = x/3 + 1/2.
Option (B) is correct.
What is the slope-intercept form of the line?
The slope-intercept equation is used to find the general equation of a straight line using its slope and the point where it intersects the y-axis. The slope intercept form equation is given as, y = mx + b.
As we can see in the graph the line cuts the y-axis at y = 1/2
so the y-intercept of the line would be c = 1/2.
And when x=4, y = 2
So we can prepare the equation as y = x/3 + 1/2.
Hence, the equation of the line would be y = x/3 + 1/2.
To learn more about the slope-intercept of the line, visit:
https://brainly.com/question/24907633
#SPJ1
The equation of the line would be y = x/3 + 1/2.
Option (B) is correct.
What is the slope-intercept form of the line?
The slope-intercept equation is used to find the general equation of a straight line using its slope and the point where it intersects the y-axis. The slope intercept form equation is given as, y = mx + b.
As we can see in the graph the line cuts the y-axis at y = 1/2
so the y-intercept of the line would be c = 1/2.
And when x=4, y = 2
So we can prepare the equation as y = x/3 + 1/2.
Hence, the equation of the line would be y = x/3 + 1/2.
To learn more about the slope-intercept of the line, visit:
https://brainly.com/question/24907633
#SPJ1
Is there anyone that can help me with a finance question?
Answer:
Yes, there are many people who can help you with a finance question. Some of the people who can help you include: financial advisors, accountants, financial planners, and financial analysts. Additionally, there are many online resources available such as personal finance forums, websites, and blogs.
Step-by-step explanation:
Let f:R→S be a surjective homomorphism of rings with identity.
(a) If R is a PID, prove that every ideal in S is principal.
(b) Show by example that S need not be an integral domain.
Every ideal of S is principal when f:R⇒S be a surjective homomorphism of rings with identity.
In a homomorphism, corresponding elements of two systems behave very similarly in combination with other corresponding elements. For example, let G and H be groups. The elements of G are denoted g, g′,…, and they are subject to some operation ⊕.
In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word homomorphism comes from the Ancient
Let f:R⇒S be a surjective homomorphism of rings with identity.
We have to find if R is a PID, prove that every ideal in S is principal.
We know that,
Let I be the ideal of S
Since f is sufficient homomorphism.
So, f⁻¹(I) is an ideal of R.
Since R is PID so ∈ r ∈ R such that
f⁻¹(I) = <r>
I = <f(r)>
Therefore,
Every ideal of S is principal when f:R⇒S be a surjective homomorphism of rings with identity.
To learn more about Homomorphism problems visit :
brainly.com/question/19865639
#SPJ4
An area code has three digits. How many different area codes are possible
Answer:
1000
Step-by-step explanation:
If any of the digits 0-9 can be used then there are 10^3 possible codes.
10^3 = 1000
s formula to find a quadratic approximation of at the origin. estimate the error in the approximation if and .
A quadratic equation of at the origin, estimate the error = 0.000859M
The approximation is valid because is very small.
Calculation of concentration:
Since
0.85 M 0 0
(0.85-x)M x x
Now the value of x should be
x = 0.0000229
So based on this, the above concentration should be determined.
In order to demonstrate that the same value of x may be achieved either way, you will now solve using the quadratic formula rather than iterations. What are the values of a, b, and c and x, where a, b, and c are the coefficients in the quadratic equation [tex]ax^{2} +bx+c=0[/tex] and x is [h3o+], when using the quadratic equation to determine [h3o+] in 0.00250 m hno2? Keep in mind that ka=4.5104.
a : 1
b : 4.5x[tex]10^{-4}[/tex]
c : 1.125x[tex]10^{-6}[/tex]
[[tex]H_{3} O^{+}[/tex]] = 0.000859M
As [tex]HNO_{2}[/tex] is a weak acid, its equilibrium in water is:
[tex]HNO_{2} (aq)+H_{2} O(I)[/tex] ⇄ [tex]H_{3} O^{+} (aq)+N_{2} O^{-} (aq)[/tex]
Equilibrium constant, ka, is defined as:
ka = 4.5x[tex]10^{-4}[/tex] = [[tex]H_{3} O^{+}[/tex]] [NO₂⁻] / [HNO₂] (Equation-1)
Equilibrium concentration of each specie are:
[HNO₂] = 0.00250M - x
[H₃O⁺] = x
[NO₂⁻] = x
Replacing in (1):
4.5x[tex]10^{-4}[/tex] = [tex]\frac{x*x}{0.00250M-x}[/tex]
1.125x10⁻⁶ - 4.5x10⁻⁴x = x²
0 = x² + 4.5x10⁻⁴x - 1.125x10⁻⁶
As the quadratic equation is ax² + bx + c = 0
Coefficients are:
a: 1
b: 4.5x10⁻⁴
c: 1.125x10⁻⁶
Now, solving quadratic equation:
x = -0.0013 → False answer, there is no negative concentrations.
x = 0.000859
As [H₃O⁺] = x; [H₃O⁺] = 0.000859M
Therefore,
A quadratic equation of at the origin, estimate the error = 0.000859M
To learn more about Quadratic equation visit :
brainly.com/question/17177510
#SPJ4
Which quantity is multiplied by pi in the formula for the area of a circle?
The quantity that is multiplied by pi in the formula for the area of a circle is the square of the radius
How to determine the multiplied quantity?From the question, we have the following parameters that can be used in our computation:
Area of a circle
The formula for the area of a circle is represented as
A = πr²
Express the formula as a product
So, we have the following representation
A = π * r²
In the above formula, we can see that the square of r is multiplied by pi
Hence, the required quantity is the square of the radius of the circle
Read more about circle area at
https://brainly.com/question/10645610
#SPJ1
PLEASE ANSWER QUICK!!
Consider the functions and f(x)=|x|-2 and g(x)=2f(x).
a. Complete the table.
b. Describe the graph of f. How does each point on the graph of f map to the corresponding point on g?
The function f(x) is an absolute function and the function g(x) will be twice the function f(x). The table is completed below.
What is a function?A function is an assertion, concept, or principle that establishes an association between two variables. Functions may be found throughout mathematics and are essential for the development of significant links.
The functions are given below.
f(x) = |x| - 2 and g(x) = 2 f(x)
The function g(x) is rewritten as,
g(x) = 2 (|x| - 2)
g(x) = 2|x| - 4
The function f(x) is an absolute function and the function g(x) will be twice the function f(x).
x f(x) = |x| - 2 g(x) = 2f(x)
-2 0 0
-1 -1 -2
0 -2 -4
1 -1 -2
2 0 0
More about the function link is given below.
https://brainly.com/question/5245372
#SPJ1
Give expressions for the following:-
1) x is multiplied by -10 and then 5 is added to the result
2) 5 is multiplied by p and the result is subtracted from 26
3)y is multiplied by -5 and the result is added to 6
Answer:
1) -10x + 5
2) 5p - 26
3) -5y + 6
Consider the function f (same as in the previous problem) defined on the interval [0, 4) as follows, F(x) = { 2/2 x. x € [0,2]. 2, x € [2, 4]Find the coefficients Cn of the eigenfunction expansion of function ff(x) = Σ[infinity], n=1 cnyn(x), where y... for n = 1,2,3,... are the unit eigenfunctions of the Regular Sturm-Liouville system - y^n = ꟾλy, y’(O) = 0, y(4) = 0Note: Label your eigenfunctions so the eigenfunction for the lowest eigenvalue corresponds ton = 1. Therefore, use 2n – 1 instead of 2n +1.C= ___
Coefficient Cn is determined by Cn = 1/2 ∫[0,2] (x+2)yn(x) dx
To find the coefficients Cn of the eigenfunction expansion of a function f(x), f(x) must be expanded with the eigenfunction yn(x). The expansion of f(x) with respect to the eigenfunction yn(x) is given by
f(x) = Σ[∞], n=1 cnyn(x)
To find the coefficient cn, we need to compute the dot product of f(x) and yn(x).
cn = (f,yn) = ∫[0,4]f(x)yn(x)dx
Since the eigenfunctions yn(x) are orthonormal, the scalar product is given by
cn = ∫[0,4]f(x)yn(x)dx = ∫[0,2]f(x)yn(x)dx + ∫[2,4]f(x)yn(x)dx
Since f(x) = 2/2 x for x in [0,2] and f(x) = 2 for x in [2,4], compute the coefficient cn as I can do it.
cn = ∫[0,2](2/2x)yn(x)dx + ∫[2,4](2)yn(x)dx
= ∫[0,2]xyn(x)dx + ∫[2,4]2yn(x)dx
= 1/2 ∫[0,2] (xyn(x) + 2yn(x)) dx
= 1/2 ∫[0,2] (x+2)yn(x) dx
Therefore, the coefficient Cn is given by
Cn = 1/2 ∫[0,2] (x+2)yn(x) dx
Read more about Coefficient Cn on brainly.com/question/17145751
#SPJ4
in the morning there were t people at the beach. later at noon, 2/7 of the people left the beach and there were 30 people left on the beach. find t
Answer:
42
Step-by-step explanation:
If 2/7 left that means that 5/7 are still there.
5/7x = 30 Multiple both sides by 7/5
x = [tex]\frac{30}{1}[/tex] x [tex]\frac{7}{5}[/tex]
x = 42
Check the binomial distribution to see whether it can be approximated by the normal distribution. Round p and q to 1 decimal place, as needed. n = 95 P = 0.96 9 -0.04 np - and ng Is a normal approximation appropriate ? Yes No
As per the binomial distribution, the value of the normal approximation is 0.6573
The term binomial distribution refers the discrete probability distribution that gives only two possible results in an experiment, either success or failure.
Here we have given that n = 95 P = 0.96 and q = 0.04
Now, here we have to check the binomial distribution to see whether it can be approximated by the normal distribution.
While we looking into the given question we know that the value of n = 95 P = 0.96.
Then as per the binomial distribution formula, the normal distribution is calculated as,
=> P(X=1) = 95C4 * (0.96)⁴ * (1-0.96)⁹⁵⁻⁴
When we simplify this one then we get the value as 0.6573
To know more about Binomial distribution here.
https://brainly.com/question/14565246
#SPJ4
Status
Review
A certain state uses the following progressive
tax rate for calculating individual income tax:
Income
Range ($)
0 - 10,000
10,001 - 50,000
50,001 - 100,000
Progressive
Tax Rate
3%
5%
5.5%
Calculate the state income tax owed on a $50,000
per year salary.
tax = $[?]
Round your answer to the nearest whole dollar amount.
Enter
h
Answer:
final answer would be $6,550
Step-by-step explanation:
To calculate the state income tax owed on a $50,000 per year salary, we can use the progressive tax rate provided in the question. We can divide the salary into three ranges, corresponding to the three tax rates:
Income Range: $0 - $10,000
Progressive Tax Rate: 3%
Tax Owed: $0 - $10,000 * 3% = $0 - $300
Income Range: $10,001 - $50,000
Progressive Tax Rate: 5%
Tax Owed: $10,001 - $50,000 * 5% = $500 - $2,500
Income Range: $50,001 - $100,000
Progressive Tax Rate: 5.5%
Tax Owed: $50,001 - $100,000 * 5.5% = $2,750 - $5,500
Thus, the total state income tax owed on a $50,000 per year salary would be $300 + $2,500 + $2,750 = $6,550. This amount should be rounded to the nearest whole dollar amount, so the final answer would be $6,550.
A recipe for a sports drink calls for 5/8 cup of powder for every 2 quarts of water. If Dionne uses 3 quarts of water, how many cups of powder are needed?
Answer: i think 15/8 but, im not sure
Step-by-step explanation:
Calculate two-thirds of three-quaters of one half
Answer:
0.25
Step-by-step explanation:
Step 1: Convert all fractions to decimals
Two-thirds = 0.6666
Three-quarters = 0.75
One-half = 0.5
Step 2: Multiply all fractions
0.6666 * 0.75 * 0.5 = 0.25
Step 3: The answer is 0.25
Answer:
[tex]\dfrac{1}{4}[/tex]
Step-by-step explanation:
Three-quarters of one half:
[tex]\implies \dfrac{3}{4} \times \dfrac{1}{2}=\dfrac{3 \times 1}{4 \times 2}=\dfrac{3}{8}[/tex]
Two-thirds of "Three-quarters of one half":
[tex]\implies \dfrac{2}{3} \times \dfrac{3}{8}=\dfrac{2 \times 3}{3 \times 8}=\dfrac{6}{24}=\dfrac{6 \div 6}{24 \div 6}=\dfrac{1}{4}[/tex]
A punter kicks a football. Its height h, in yard, t seconds after the kick is given by the equation h(t)=-4.9t^2+18.24t+0.8. The height of an approaching blocker's hand is modeled by the equation h(t)=-1.43t+4.26, using the same time. Can the blocker knock down the punt (do they intersect)? If so, at what point will that happen (the point of intersection)?
Part 1
[tex]-4.9t^2 +18.24t+0.8=-1.43t+4.26\\\\-4.9t^2 +19.67t-3.46=0\\\\\Delta =(19.67)^2 -4(-4.9)(-3.46)=319.0929 > 0[/tex]
Therefore, the blocker can knock down the punt.
Part 2
Using the quadratic formula,
[tex]t=\frac{-19.67 \pm \sqrt{319.0929}}{2(-4.9)}\\\\t \approx 0.18437, 3.82992[/tex]
Considering the graphs, it is clear to take the smaller solution. Thus, the point of intersection is [tex](0.18437, h(0.18437))=\boxed{(0.18437, 3.99635)}[/tex].
The sum of an infinite geometric series with first term a and common ratio r < 1 is given by The sum of a given a/1-r infinite geometric series is 300, and the common
ratio is 0.1. What is the second term of this series?
The second term of the series will be 27.
What is a Geometric progression?Geometric Progression (GP) is a type of sequence where each succeeding term is produced by multiplying each preceding term by a fixed number, which is called a common ratio. This progression is also known as a geometric sequence of numbers that follow a pattern.
Sum to infinity = a/1-r
where s = 300
r = 0.1
a = 300 (1 - 0.1)
a = 300 (0.9)
a = 270
The second term of the progression will be = ar
Second term = 270 x 0.1
Second term = 27
Learn more about Geometric progression: https://brainly.com/question/24643676
#SPJ1
Advanced Algebra - please help
Answer:
Below
Step-by-step explanation:
Only the middle three are tri -nomials ( three terms)
the third one reduces to (x+ 2)^2
Answer:
3
Step-by-step explanation:
(x+2)^2
A racetrack charges $85 for each seat in the lower section, $60 for each seat in the upper sections, and $35 for field tickets. There are three times the amount of seats in the upper section as compared to the lower section. The revenue from selling all 22,800 seats is $948,000. How many seats are in the upper section of the racetrack?
Using a system of equations, the number of seats in the upper section of the racetrack is 3,600.
What is a system of equations?A system of equations, also called simultaneous equations, is two or more equations solved concurrently.
We can use any of the following methods to solve simultaneous equations:
GraphicalSubstitutionEliminationMatrix.In this situation, after forming the equations, we can use substitution and elimination methods to solve them.
Racetrack charge per lower seat = $85
Racetrack charge per upper seat = $60
Racetrack charge per field ticket = $35
Let lower seats = x
Let upper seats = 3x
Let field tickets = y
4x + y = 22,800 ... Equation 1
y = 22,800 - 4x ...Equation 3
85x + 60(3x) + 35y = 948,000
85x + 180x + 35y = 948,000 ... Equation 2
Substitute Equation 3 in Equation 2 to eliminate y:
85x + 180x + 35(22,800 - 4x) = 948,000
85x + 180x + 798,000 - 140x = 948,000
125x = 948,000 - 798,000
125x = 150,000
x = 1,200
Determining the number of seats:
Seats in the Lower section = 1,200
Seats in the Upper section = 3,600 (1,200 x 3)
Field tickets, y = 22,800 - 4x
y = 22,800 - 4(1,200)
= 18,000
Check:
85x + 180x + 35y = 948,000
85(1,200) + 180(1,200) + 35(18,000) = 948,000
102,000 + 216,000 + 630,000 = 948,000
948,000 = 948,000
Thus, based on simultaneous equations, there are 3,600 seats in the upper section of the racetrack.
Learn more about simultaneous equations at https://brainly.com/question/28768577
#SPJ1