Answer:
x=12 .
Step-by-step explanation:
See image below:)
Write the word sentence as an equation.
The quotient of a number n and 5 is 18.
Answer:
n/5 = 18
Step-by-step explanation:
Quotient means division.
n/5 = 18
Consider the graph below: Point T(-2; 3) is a point on the Cartesian Plane such that B is the angle of inclination of OT. T(-2;3) у х 2.1 Calculate the following without the use of a calculator: a) tanſ b) 13 sin B.cosB (2)
Answer:
(a) - 3/2
(b) - 78/25
Step-by-step explanation:
According to the trigonometry, the tangent of any angle is the ratio of rise to the run of the right angle triangle .
The sine of an angle is the ratio of rise to the hypotenuse of the right angle triangle.
The cosine of an angle is the ratio of run to the hypotenuse of the right angle triangle.
(a)
[tex]tan\beta = \frac{3}{-2} = \frac{-3}{2}[/tex]
(b)
[tex]13 sin\beta cos \beta = 13\times \frac{3}{\sqrt{3^2+2^2}}\times\frac{-2}{\sqrt{3^2+2^2}}\\\\13 sin\beta cos\beta = \frac{- 78}{25}[/tex]
Here is a table of values for y = f(x).
Х
-2 -1 0 1 2 3
4.
5
6
f(x) 5
6 7 8 9 10 11 12 13
Mark the statements that are true.
Step-by-step explanation:
the true answers are:
A. f(-1)=6
D. the domain for f(x) is the set
{-2,-1,0,1,2,3,4,5,6}
Find an equation for the line parallel to 3x-5y=2 with y-intercept (0,1/5). Write the answer in slope-intercept form.
Assume that Z has a standard normal distribution. Determine the value for z that solves each of the following.
a. P(-z < Z < z) = 0.95 (Round your answer to two decimal places (e.g. 98.76))
b. P(-z < Z < z) = 0.99 (Round your answer to two decimal places (e.g. 98.76))
c. P(-z < Z < z) = 0.68 (Round your answer to three decimal places (e.g. 98.765))
d. P(-z < Z < z) = 0.9973 (Round your answer to two decimal places (e.g. 98.76))
Answer:
a) P ( - 1.96 < Z < 1.96 )
b) P ( - 2.58 < Z < 2.58)
c) P ( -0.995 < Z < 0.995 )
d) P ( - z < Z < z ) = P ( ( Z ± 3σ ) then that is close to 1
Step-by-step explanation:
a) P ( - z < Z < z ) = P ( - 1.96 < Z < 1.96 )
CI = 95 % significance level α = 5 % α = 0.05 α/2 = 0.025
z = 1.96
b) P ( - z < Z < z ) = P ( - 2.58 < Z < 2.58)
CI = 99 % significance level α = 1 % α = 0.01 α/2 = 0.005
z = 2.58
c) P ( - z < Z < z ) = P ( -0.995 < Z < 0.995 )
CI = 68 % significance level α = 32 % α = 0.32 α/2 = 0.16
z ≈ 0.9954
We interpolate in this case
1 ⇒ 0.1587
0.99 ⇒ 0.1611
0.01 ⇒ 0.0024
x ⇒ 0.0013 x = 0.01 *0.0013 / 0.0024
x = 0.005416
and z = 0.99 + 0.005416
z = 0.9954
d) P ( - z < Z < z ) = P ( - 0.00 < Z < 0. 00)
CI = 0.9973 % significance level α = 0.0027 % α = 0.000027 α/2 = 0.0000135
z = 0.00003375 ⇒ z = 0.00
NOTE: The value of α is too small. The Empirical Rule establishes that 99.7 % of all values in a normal distribution fall in the interval ( Z ± 3σ)
that means all the values. Then the probability of finding the random variable between that range is close to 1 and we can not find in tables a number to approximate just with only two decimal places
differentiate loge(x/x^2+7)
Answer:
1+1=11 2+2=22 ok na yan kuya or ate
Evan wants to make an array of 32 miniature cars What are all the different ways Evan can place the cars?
Answer:
1 × 32, 2 × 16, 4 × 8, 8 × 4, 16 × 2, 32 × 1
Step-by-step explanation:
There are 6 different ways for Evan to create a array of 32 miniature cars.
What is the fundamental principle of multiplication?Multiplication is the mathematical operation that is used to determine the product of two or more numbers. If an event can occur in m different ways and if following it, a second event can occur in n different ways, then the two events in succession can occur in m × n different ways.
An array would constitute the shape of a parallelogram, in which you are essentially solving for s₁ and s₂.
Since there are 32 miniature cars in all, in which both sides, when multiplied, must result in said number:
32 x 1 = 32
2 x 16 = 32
4 x 8 = 32
8 x 4 = 32
16 x 2 = 32
1 x 32 = 32
Hence, There are 6 different ways for Evan to create a array of 32 miniature cars.
Learn more about multiplications;
https://brainly.com/question/14059007
#SPJ2
Gasoline sells for 1.3 euros per liter. What is the price in US dollars per gallon? (recall that 1 gal = 3.785 L)
British pound is 1.212 to 0.8251 USD
4.67 $/gal is the price of gasoline.
Step-by-step explanation:
Given:
Price of gasoline = 1.3 €/L
1 gallon is equals to 3.785 Liters
1 euros is equals to 0.9497 US dollars
To find:
The price of gasoline in US dollars per gallon
Solution:
Price of the gasoline = 1.3 €/L
[tex]1 gal = 3.785 L\\1L=\frac{1}{3.785} gal\\ 1.3 euro /L=\frac{1.3 euro }{\frac{1}{3.785 }gal}\\=\frac{1.3 euro \times 3.785 }{1 gal}=4.9205 euro /gal[/tex]
Now convert euros to US dollars by using :
1 euros = 0.9497 $
The price of gasoline in US dollar per gallons:
[tex]4.9205 euro/gal=4.9205 \times 0.9497 \$/gal\\=4.6730 \$/gal\approx 4.67 \$/gal[/tex]
4.67 $/gal is the price of gasoline.
Learn more about conversions:
brainly.com/question/13076223
brainly.com/question/2904463?referrer=searchResults
A.54 pie cm^3
B.72 pie cm^3
C.126 pie cm^3
D.378 pie cm^3
==========================================================
Explanation:
The radius of each sphere is r = 3
The volume of one sphere is
V = (4/3)*pi*r^3
V = (4/3)*pi*3^3
V = 36pi
That's the volume of one sphere.
Three spheres take up 3*36pi = 108pi cm^3 of space.
---------------------------
The radius of the cylinder is also r = 3, since each tennis ball fits perfectly in the container.
The height is h = 18 because we have each ball with a diameter 6, which leads to the three of them stacking to 3*6 = 18.
The volume of the cylinder is...
V = pi*r^2*h
V = pi*3^2*18
V = 162pi
-------------------------
Subtract the volume of the cylinder and the combined volume of the spheres: 162pi - 108pi = (162-108)pi = 54pi
This is the exact volume of empty space inside the can.
This points to choice A as the final answer
what percentage of 7 1/2 is 2 1/2
Answer:
7+½ = (7*2+(1))/2=15/2
Step-by-step explanation:
2+½ =5/2 and. (15/2)/(5/2)=3. this means %33.3333
3 3/4 × 2 2/9 please
Help ♀️♀️♀️
[tex]\implies {\blue {\boxed {\boxed {\purple {\sf { \: 8 \frac{1}{3}\:(or) \:8.333}}}}}}[/tex]
[tex]\sf \bf {\boxed {\mathbb {Step-by-step\:explanation:}}}[/tex]
[tex]3 \frac{3}{4} \times 2 \frac{2}{9} [/tex]
➺[tex] \: \frac{15}{4} \times \frac{20}{9} [/tex]
➺[tex] \: \frac{300}{36} [/tex]
➺[tex] \: \frac{25}{3} [/tex]
➺[tex] \: 8 \frac{1}{3} [/tex]
➺[tex] \: 8.333[/tex]
[tex]\large\mathfrak{{\pmb{\underline{\pink{Mystique35 }}{\orange{❦}}}}}[/tex]
Find tan 0, where is the angle shown. Give an exact value, not a decimal approximation. (PLZ HELP DUE SOON I GIVE BRAINLIST :D)
Answer:
[tex]\frac{24}{7}[/tex]
Step-by-step explanation:
Tanθ=Opposite/Adjacent
we have the adjacent side but need the oppsoite
We will use a²+b²=c²
25²=7²+b²
576=b²
b=24
Therefore the answer is
[tex]\frac{24}{7}[/tex]
Gỉaỉ pt
2x^2×(2x^2+3)=2-x^2 ai giải giúp vs
2x²×(2x²+3)=2-x²
[tex]x = \frac{1}{2} , - \frac{1}{2} ,i \sqrt{2} , - i \sqrt{2} [/tex]
4. Steven drove from place A to place B at an average speed of 50 km/h. At the same
time, Joseph drove from place B to place A at an average speed of 60 km/h using
the same route. If the distance between A and B were 300 km, what is the distance
between Steven and Joseph after one and one half hours?
5.An owner jeep traveling at an average speed of 70 km/h left the town at 2:00 pm
If it arrived in another town at 6:00 p.m., how far are the two towns?
Answer:
1. 10 km
2.280 km
please mark my answer as brainliest answer.
the answer is surely correct
1/6 of ______ equals 9
What is the blank?
Answer:
54
Step-by-step explanation:
1/6 × y = 9
y ÷ 6 = 9
y ÷ 6 × 6 = 9 × 6
y = 54
Paige and her family went to the movies. They bought 4 tickets and paid $12 for popcorn. They spent $40. How much did each ticket cost?
I need equation and cost :)
Answer:
Cost of tickets: $7. Equation: 40 = 4x + 12.
Step-by-step explanation:
Answer:
4*t +12 = 40
Each ticket cost 7 dollars
Step-by-step explanation:
tickets + popcorn = total cost
4*t +12 = 40
Subtract 12 from each side
4t +12-12 = 40-12
4t = 28
Divide by 4
4t/4 = 28/4
t = 7
Each ticket cost 7 dollars
Solve for y.
r/3-2/y=s/5
Answer:
y = 2 / (r/3 - s/5)
Step-by-step explanation:
r/3 - 2/y = s/5
add 2/y to both sides
r/3 = s/5 + 2/y
Subtract s/5 from both sides
r/3 - s/5 = 2/y
multiply both sides by y
y(r/3 - s/5) = 2
Divide both sides by r/3 - s/5
y = 2 / (r/3 - s/5)
A right rectangular container is 10 cm wide and 24 cm long and contains water to a depth of 7cm. A stone is placed in the water and the water rises 2.7 cm. Find the volume of the stone.
Answer:
The volume of the rock is 648 cm^3
Step-by-step explanation:
Likely the only dimension that is free to move is the depth of 7 cm.
Volume of the Rock = L * W * h1
L = 24
W = 10
h1 = 2.7
V = 24 * 10 * 2.7
V = 648 cm^3
I NEEEEED HELP!!!!!!
25 POINTS!!!!!!
Which is true about the solution to the system of inequalities shown? y<1/3x-1
Answer:
All values that satisfy [tex]y[/tex] ≤ [tex]\frac{1}{3} x-3[/tex] are solutions
Step-by-step explanation:
The reason why the other equations solutions aren't solutions are because it doesn't satisfy the second equation, but the second equation satisfy both equations because the solutions of the second equations will be in both equations.
Hope this helps
If f(x) = - 2x +5 and g(x)=x2-1, then f(-3)+g(2) =
Answer:
[tex]{ \tt{f(x) = - 2x + 5}} \\ { \boxed{ \bf{f( - 3) = - 2( - 3) + 5 = 11}}} \\ \\ { \tt{g(x) = {x}^{2} - 1}} \\ { \boxed{ \bf{g(2) = {2}^{2} - 1 = 3}}} \\ f( - 3) + g(2) = 11 + 3 \\ = 14[/tex]
solve for surface area
formula for cube:
SA = 2 (s times s) + (4s) ( H)
Which expression is equivalent to 4p^-4 10q -3? Assume
Step-by-step explanation:
Derive an expression for the equivalent width in a saturated line. Assume a Voigt profile, with the difference in optical depth between the center of the line and the wings being ~104. The wings of the line can be ignored. Define a frequency x1 = (v1 − v0)/ΔvD, where the optical depth τv = 1. Inside of x1 the line is fully saturated, and outside x1 the line is optically thin. Show that the equivalent width is

Note that the equivalent width is practically insensitive to the number density of absorbing material.
PLEASE HELP!
Determine which of the following lists is in order from smallest to largest.
1. -3,131,0, (-3)^2
2. (-3)^2,-3,0, |3|
3. -3,0,|3|, (-3)^2
4. 0,-3,|3|, (-3)^2
Answer:
3. -3,0,|3|, (-3)^2
Step-by-step explanation:
Answer:
answer would be option 3
Step-by-step explanation:
help this helps
9x5
pls help meeeeeeeeee
Answer:
45
hope this helps
Answer:
45
Step-by-step explanation:
9x5=45
The student council has 30 male members and 25 female members. What is the ratio of male student council members to female?
please help me please help me please help me please help me please help me please help me please
Answer:
Q3. 9
Q4. 6
Step-by-step explanation:
which equation is the inverse of 5y+4=(×+3)^2+1/2?
Answer:
The inverse is -3 ±sqrt(5x+7/2)
Step-by-step explanation:
5y+4=(x+3)^2+1/2?
To find the inverse, exchange x and y
5x+4=(y+3)^2+1/2
Solve for y
Subtract 1/2
5x+4 -1/2=(y+3)^2+1/2-1/2
5x+8/2 -1/2=(y+3)^2+1/2-1/2
5x+7/2 = (y+3)^2
Take the square root of each side
±sqrt(5x+7/2) =sqrt( (y+3)^2)
±sqrt(5x+7/2) = (y+3)
Subtract 3 from each side
-3 ±sqrt(5x+7/2) = y+3-3
-3 ±sqrt(5x+7/2) = y
The inverse is -3 ±sqrt(5x+7/2)
(View attachment)
a) Write ordered pairs.
b) Write the domain and range.
c) Why isn't the relation a function?
d) Which ordered pair should be removed to make the relation a function?
Answer:
in a relationship that maps elements from one set (the inputs) into elements from another set (the outputs), the usual notation for the ordered pairs is:
(x, y), where x is the input and y is the output.
In this case, the point where the arrow starts is the input, and where the arrow ends is the output.
a)
The ordered pairs are:
(28, 93)
(17, 126)
(52, 187)
(34, 108)
(34, 187)
b) The domain is the set of the inputs, in this case the domain is the set where all the arrows start, then the domain is:
{17, 28, 34, 52}
And the range is the set of the outputs, in this case the range is:
{93, 108, 126, 187}
c) A function is a relationship where the elements from the domain, the inputs, can be mapped into only one element from the range.
In this case, we can see that the input {34} is being mapped into two different outputs, then this is not a function.
d) We can remove one of the two ordered pairs where the input is {34},
So for example, we could remove:
(34, 108)
And then the relation would be a function.
At the beginning of a population study, a city had 320,000 people. Each year since, the population has grown by 2.1%. Lett be the number of years since start of the study. Let y be the city's population. Write an exponential function showing the relationship between y and t.
Answer:
y = 320,000(2.1)^t
Step-by-step explanation:
uhm, im not very good at explaining, but everytime the year increases, the population will exponentially increase, that's why 't' is an exponent
Answer:
[tex]y=320000(1.021)^t[/tex]
Step-by-step explanation:
To increase something by x% mulitply it by (1+x)
in other words, to increase sometihng by 2.1% mulitply it by
(1+.021) or 1.021
because we are mulitplying 320000 by 1.021 each year we can write the equation as
y=320000(1.021)^t